Skip to main content

Advertisement

Log in

An ecological model for the Scheldt estuary and tidal rivers ecosystem: spatial and temporal variability of plankton

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This paper presents the formulation, structure, and governing equations of an ecosystem model developed for the Scheldt estuary and the tidal river network. The model has twelve state variables: nitrate, ammonium, phosphate, dissolved silica, freshwater and marine phytoplankton (chlorophytes and diatoms), freshwater zooplankton (ciliates, rotifers, and copepods), and benthic detritus. The ecological model is coupled to the 1-D tidal resolving version of the Second-generation Louvain-la-neuve ice-ocean Model (SLIM) (http://www.climate.be/SLIM). The model successfully simulates the observed longitudinal and seasonal variation of plankton in the Scheldt estuary. The phytoplankton production in the estuary is governed by temperature, underwater available light, turbidity, nutrients, and discharge. Of all these factors, discharge seems to be dominant. High discharge increases the turbidity in the water column and thus reduces the underwater light, while low discharge means decreased nutrients. The marine phytoplankton species were present as far to the upstream limits of the brackish waters, with diatoms dominating in the spring and chlorophytes in early summer. The freshwater phytoplankton are seen from late spring to summer. Freshwater zooplankton followed the evolution of freshwater phytoplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Admiraal, W., 1977. Influence of light and temperature on the growth rate of estuarine benthic diatoms in culture. Marine Biology 39: 1–9.

    Article  Google Scholar 

  • Arndt, S., J.-P. Vanderborgth & P. Regnier, 2007. Diatom growth response to physical forcing in a macrotidal estuary: coupling hydrodynamics, sediment transport and biogeochemistry. Journal of Geophysical Research 12. doi:10.1029/2006JC003581.

  • Arndt, S., P. Regnier & J.-P. Vanderborgth, 2009. Seasonally-resolved nutrient export fluxes and fluxes and filtering capacities in a macro tidal estuary. Journal of Marine Systems 78: 42–58.

    Article  Google Scholar 

  • Arndt, S., G. Lacroix, N. Gypens, P. Regnier & C. Lancelot, 2011. Nutrient dynamics and phytoplankton development along the estuary-coastal zone continuum: a model study. Journal of Marine Systems 84: 49–66.

    Article  Google Scholar 

  • Baeyens, W., B. van Eck, C. Lambert, R. Wollast & L. Goeyens, 1998. General description of the Scheldt estuary. Hydrobiologia 366: 1–14.

    Article  Google Scholar 

  • Baretta-Bekker, J. G., J. W. Baretta, M. J. Latuhihin, X. Desmit, & T. C. Prins, 2009. Description of the long-term (1991–2005) temporal and spatial distribution of phytoplankton carbon biomass in the Dutch North sea. Journal of Sea Research 61: 50–59.

    Article  Google Scholar 

  • Blauw, A. N., H. F. J. Los, M. Bokhorst & P. L. A. Erftemeijer, 2009. GEM: a genetic ecological model for estuaries and coastal waters. Hydrobiologia 618: 175–198.

    Article  CAS  Google Scholar 

  • Brion, N., M. G. I. Andersson, M. Elskens, C. Diaconu, W. Baeyens, F. Dehairs & J. J. Middelburg, 2008. Nitrogen cycling, retention and export in a eutrophic temperate macrotidal estuary. Marine Ecological Progress Series 357: 87–99.

    Article  CAS  Google Scholar 

  • Carbonnel, V., M. Lionard, K. Muylaert & L. Chou, 2009. Dynamics of dissolved and biogenic silica in the freshwater reaches of a macrotidal estuary (The Scheldt, Belgium). Biogeochemistry 96: 49–72.

    Article  CAS  Google Scholar 

  • Chen, M. S., S. Wartel, B. Van Eck & D. V. Maldegem, 2005. Suspended matter in the Scheldt Estuary. Hydrobiologia 540: 79–104.

    Article  Google Scholar 

  • Cloern, J. E., 1987. Turbidity as a control on phytoplankton biomass and productivity. Continental Shelf Research 7: 1367–1381.

    Article  Google Scholar 

  • de Brye, B., A. de Brauwere, O. Gourgue, T. Kärnä, J. Lamprechts, R. Comblen & E. Deleersnijder, 2010. A finite-element, multi-scale model of the Scheldt tributaries, river, estuary and ROFI. Coastal Engineering. doi:10.1016/j.coastaleng.2010.04.001.

  • Desmit, X., J. P. Vanderborght, P. Regnier & R. Wollast, 2005. Control of phytoplankton production by physical forcing in a strongly tidal, well-mixed estuary. Biogeosciences 2: 205–218.

    Article  Google Scholar 

  • Di Toro, D. M., 1980. Applicability of cellular equilibrium and monod theory to phytoplankton growth kinetics. Ecological Modelling 8: 201–218.

    Article  Google Scholar 

  • Di Toro, D. M., D. J. O’Connor & R. V. Thomann, 1971. A Dynamic Model of the Phytoplankton Population in the Sacramento-San Joaquin Delta. Advances in Chemistry Series, Non-equilibrium Systems in Natural Water Chemistry, Vol. 106. American Chemical Society, Washington, DC: 131–180.

  • Dijkman, N. & J. C. Kromkamp, 2006, Photosynthesis characteristics of the phytoplankton in the Scheldt estuary: community and single-cell fluorescence measurements. European Journal of Phycology 41: 425–434.

    Article  Google Scholar 

  • Eppley, R. W., 1972. Temperature and phytoplankton growth in the sea. Fishery Bulletin, 70: 1063-1085.

    Google Scholar 

  • Flameling, I. A. & J. Kromkamp, 1994. Responses of respiration and photosynthesis of Scenedesmus protuberans Fritsch to gradual and steep salinity increases. Journal of Plankton Research 16: 1781–1791.

    Article  Google Scholar 

  • Fransz, H. G. & J. H. G. Verhagen, 1985. Modelling research on the production of phytoplankton in the southern bight of the north sea in relation to riverborne nutrient loads. Netherlands Journal of Sea Research 19: 241–250.

    Article  Google Scholar 

  • Gazeau, F., J.-P. Gattuso, J. J. Middelburg, N. Brion, L.-S. Schiettecatte, M. Frankignouille & A. V. Borges, 2005. Planktonic and whole system metabolism in a nutrient-rich estuary (the Scheldt Estuary). Estuaries 28: 868–883.

    Article  CAS  Google Scholar 

  • Goosen, N. K., P. van Rijswijk & U. Brockmann, 1995. Comparison of heterotrophic bacterial production rates in early spring in the turbid estuaries of the Scheldt and the Elbe. Hydrobiologia 311: 31–42.

    Article  Google Scholar 

  • Gourge, O., 2011. Finite element modelling of sediment dynamics in the Scheldt. PhD Thesis, UCL: p. 151.

  • Gourge, O., W. Baeyens, M. S. Chen, A. de Brauwere, B. de Brye, E. Deleersnijder, M. Elskens & V. Legat, 2013. A depth-averaged two-dimensional sediment transport model for environmental studies in the Scheldt Estuary and tidal river network. Journal Marine Systems 128: 27–39.

    Article  Google Scholar 

  • Griffin, S. L., M. Herzfeld, & D. P. Hamilton, 2001. Modelling the impact of zooplankton on phytoplankton biomass during a dinoflagellate bloom in the Swan River Estuary, Western Australia. Ecological Engineering 16: 373–394.

    Article  Google Scholar 

  • Gypens, N., E. Delhez, A. Vanhoutte-Brunier, S. Burton, V. Thieu, P. Passy, Y. Liu, J. Callens, V. Rousseau & C. Lancelot, 2012. Modelling phytoplankton succession and nutrient transfer along the Scheldt estuary (Belgium, The Netherlands). Journal of Marine Systems. doi:10.1016/j.jmarsys.2012.10.006.

  • HIC, 2015. http://www.hydra.vlaanderen.be/hic/servlet/index.

  • Hofmann, A. F., K. Soetaert & J. J. Middelburg, 2008. Present nitrogen and carbon dynamics in the Scheldt estuary using a novel 1-D model. Biogeosciences 5: 981–1006.

    Article  CAS  Google Scholar 

  • Ignatiades, L. & T. J. Smayda, 1970. Autecological studies on the marine diatom Rhizosolenia fragilissima Bergon. I. The influence of light, temperature and salinity. Journal of Phycology 6: 332–333.

    Google Scholar 

  • Ivlev, V. S., 1945. The biological productivity of waters. USP Sovereign Biology 19: 98–120.

    Google Scholar 

  • Kishi, M. J., M. Kashiwai, D. M. Ware, A. M. Megrey, D. L. Eslinger, F. E. Werner, et al., 2007. NEMURO-a lower trophic level model for the North Pacific marine ecosystem. Ecological Modelling 202: 12–25.

    Article  Google Scholar 

  • Klepper, O., M. W. M. van der Tol, H. Scholten & P. M. J. Herman, 1994. SMOSES: a simulation model for the Oosterschelde ecosystem. Hydrobiologia 282–283: 437–451.

    Article  Google Scholar 

  • Koeman, R. P. T., C. J. E. Brochard, K. Fockens, G. L. Verweij & P. Esselink, 2004. Biomonitoring van Fytoplankton in de Nederlandse Zoute Wateren 2003 Kite Diagrammen, Koeman en Bijkerk, Ecologisch onderzoek en advies, Haren.

  • Kremer, J. N. & S. W. Nixon, 1978. A Coastal Marine Ecosystem: Simulation and Analysis. Ecological Studies, Vol. 24. Springer, Heidelberg: p. 217.

  • Kromkamp, J. C. & J. Peene, 1995. Possibility of net phytoplankton primary production in the turbid Scheldt estuary (SW Netherlands). Marine Ecology Progress Series 121: 249–259.

    Article  Google Scholar 

  • Kromkamp, J. C. & J. Peene, 2005. Changes in phytoplankton biomass and primary production between 1991 and 2001 in the Westerschelde estuary (Belgium/The Netherlands). Hydrobiologia 540: 117–126.

    Article  Google Scholar 

  • Langdon, C., 1993. The significance of respiration production measurements based on both carbon and oxygen. In Li, W. K. W. & S. Y. Maestrini (eds), Measurement of Primary Production from the Molecular to the Global Scale, Vol. 197. ICESS MSS, International Council for the Exploration of the Sea, Copenhagen: pp. 69–78.

  • Laws, E. & J. Caperon, 1976. Carbon and nitrogen metabolism by Monochrysis lutheri: measurement of growth-rate dependent respiration rates. Marine Biology 36: 85–97.

    Article  CAS  Google Scholar 

  • Lingeman-Kosmerchock, M., 1978. Phytoplankton cells, their nutrient contents, mineralisation and sinking rates. Delft Hydraulics Laboratory Report R1310, Delft.

  • Lionard, M., K. Muylaert, D. van Gansbeke & W. Vyverman, 2005a. Influence of changes in salinity and light intensity on growth of phytoplankton communities from the Schelde River Estuary (Belgium/The Netherlands). Hydrobiologia 540: 105–115.

    Article  Google Scholar 

  • Lionard, M., F. Azémar, S. Boulêtreau, K. Muylaert, M. Tackx & W. Vyverman, 2005b. Grazing by meso- and microzooplankton on phytoplankton in the upper reaches of the Schelde Estuary (Belgium/The Netherlands). Estuarine, Coastal and Shelf Science 64: 764–774.

    Article  Google Scholar 

  • Lionard, M., K. Muylaert, M. Tackx & W. Vyverman, 2008a. Evaluation of the performance of HPLC-CHEMTAX analysis for determining phytoplankton biomass and composition in a turbid estuary (Schelde, Belgium). Estuarine, Coastal and Shelf Science 76: 809–817.

    Article  Google Scholar 

  • Lionard, M., K. Muylaert, A. Hanoutti, T. Maris, M. Tackx & W. Vyverman, 2008b. Inter-annual variability in phytoplankton summer blooms in the freshwater tidal reaches of the Schelde estuary (Belgium). Estuarine, Coastal and Shelf Science 79: 694–700.

    Article  Google Scholar 

  • Los, F. J., 1982. Mathematical simulation of algae blooms by the model BLOOM II. Delft Hydraulics Laboratory Publication No. 316, Delft.

  • Mague, T. H., E. Friberg, D. J. Hughes, & I. Morris, 1980. Extracellular release of carbon by marine phytoplankton; a physiological approach. Limnology and Oceanography 25: 262–279.

    Article  CAS  Google Scholar 

  • Meire, P., T. Ysebaert, S. van Damme, E. V. den Bergh, T. Maris & E. Struyf, 2005. The Scheldt estuary: a description of a changing ecosystem. Hydrobiologia 540: 1–11.

    Article  CAS  Google Scholar 

  • Montagnes, J. S., & D. J. Franklin, 2001. Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: Reconsidering some paradigms. Limnology & Oceanography 46: 2008–2018.

    Article  CAS  Google Scholar 

  • Muylaert, K. & K. Sabbe, 1999. Spring phytoplankton assemblages in and around the maximum turbidity zone of the estuaries of the Elbe (Germany), the Schelde (Belgium/The Netherlands) and the Gironde (France). Journal of Marine Systems 22: 133–149.

    Article  Google Scholar 

  • Muylaert, K., A. Van Kerckvoorde, W. Vyverman & K. Sabbe, 1997. Structural characteristics of phytoplankton assemblages in tidal and non-tidal freshwater systems: a case study from the Schelde basin, Belgium. Freshwater Biology 38: 263–276.

    Article  Google Scholar 

  • Muylaert, K., K. Sabbe & W. Vyverman, 2000a. Spatial and temporal dynamics of phytoplankton communities in a freshwater tidal estuary (Schelde, Belgium). Estuarine, Coastal and Shelf Science 50: 673–687.

    Article  Google Scholar 

  • Muylaert, K., R. V. Mieghem, K. Sabbe, M. Tackx & W. Vyverman, 2000b. Dynamics and trophic roles of heterotrophic protists in the plankton of a freshwater tidal estuary. Hydrobiologia 432: 25–36.

    Article  Google Scholar 

  • Muylaert, K., J. Van Wichelen, K. Sabbe & W. Vyverman, 2001. Effects of freshets on phytoplankton dynamics in a freshwater tidal estuary (Schelde, Belgium). Archiv für Hydrobiologie 150: 269–288.

    CAS  Google Scholar 

  • Muylaert, K., M. Tackx & W. Vyverman, 2005a. Phytoplankton growth rates in the freshwater tidal reaches of the Schelde estuary (Belgium) estimated using a simple light-limited primary production model. Hydrobiologia 540: 127–140.

    Article  Google Scholar 

  • Muylaert, K., R. Dasseville, L. De Brabandere, F. Dehairs & W. Vyverman, 2005b. Dissolved organic carbon in the freshwater tidal reaches of the Schelde estuary. Estuarine, Coastal and Shelf Science 64: 591–600.

    Article  Google Scholar 

  • Muylaert, K., K. Sabbe & W. Vyverman, 2009. Changes in phytoplankton diversity and community composition along the salinity gradient of the Schelde estuary (Belgium/The Netherlands). Estuarine, Coastal and Shelf Science 82: 335–340.

    Article  CAS  Google Scholar 

  • NCEP, 2015. http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html.

  • NIOO, 2015. http://www.nioo.knaw.nl/en/content/datasets.

  • Parsons, T. R., R. J. Le Brasseur & J. D. Fulton, 1967. Some observations on the dependence of zooplankton grazing on cell size and concentration of phytoplankton blooms. Journal of Oceanographical Society of Japan 23: 10–17.

    Google Scholar 

  • Parsons, T. R., M. Takahashi & B. Hargrave, 1984. Biological Oceanographic Processes, 3rd edn. Pergamon Press, Oxford.

    Google Scholar 

  • RWS, 2015. Ministerie van Verkeer en Waterstaat. http://www.waterbase.nl.

  • ScheldtMonitor, Onderzoek Milieu-effecten Sigmaplan, 2015. Multidisciplinaire studie rond het estuariene milieu van de Zeeschelde. Ecosystem Management Research Group, UA; Protistology and Aquatic Ecology, Ugent; Laboratoire d’Ecologie des Hydrosystèmes, Université Paul Sabatier – France, i.o.v. Vlaamse Overheid; Beleidsdomein Mobiliteit en Openbare Werken; Waterwegen en zeekanaal NV. Retrieved from http://www.scheldemonitor.be/imis.php?module=dataset&dasid=1381.

  • Smetacek, V. S., 1980. Zooplankton standing stock, copepod faecal pellets and particulate detritus in Kiel Bight. Marine Biology 63: 1–11.

    Article  Google Scholar 

  • Soetaert, K. & P. M. J. Herman, 1995. Carbon flows in the Westerschelde estuary (The Netherlands) evaluated by means of an ecosystem model (MOSES). Hydrobiologia 311: 247–266.

    Article  CAS  Google Scholar 

  • Soetaert, K., P. M. J. Herman & J. Kromkamp, 1994. Living in twilight: estimating net phytoplankton growth in the Westerschelde estuary (The Netherlands) by means of an ecosystem model (MOSES). Journal of Plankton Research 16: 1277–1301.

    Article  Google Scholar 

  • Tackx, M. L. M., 1987. Grazing door zooplankton in de Oosterschelde. PhD Thesis, Lab. voor ecologie en systematiek, Vrije Universiteit Brussel.

  • Tackx, M. L. M., N. de Pauw, R. van Mieghem, F. Azemar, A. Hannouti, S. van Damme, F. Fiers, N. Daro & P. Meire, 2004. Zooplankton in the Schelde estuary, Belgium and The Netherlands. Spatial and temporal patterns. Journal of Plankton Research 26: 133–141.

    Article  CAS  Google Scholar 

  • Vanderborght, J. P., R. Wollast, M. Loijens & P. Regnier, 2002. Application of a transport-reaction model to the estimation of biomass fluxes in the Scheldt estuary. Biogeochemistry 59: 207–237.

    Article  CAS  Google Scholar 

  • Vanderborght, J. P., I. M. Folmer, D. R. Agiuilera, T. Unhrenholdt & P. Regnier, 2007. Reactive-transport modelling of C, N, and O2 in a river–estuarine–coastal zone system: application to the Scheldt estuary. Marine Chemistry 106: 92–110.

    Article  CAS  Google Scholar 

  • Van der Zee, C., N. Roevros & L. Chou, 2007. Phosphorus speciation, transformation and retention in the Scheldt estuary (Belgium/The Netherlands) from the freshwater tidal limits to the North Sea. Marine Chemistry 106: 76–91.

    Article  Google Scholar 

  • Van Rijn, L. C., 2010. Tidal phenomena in the Scheldt Estuary. Report, Deltares: p. 105.

  • Waterbase, 2015. Ministerie van Verkeer en Waterstaat. http://www.waterbase.nl.

  • Weger, H. G., R. Herzig, P. G. Falkowski & D. H. Turpin, 1989. Respiratory losses in the light in a marine diatom: measurements by short-term mass spectrometry. Limnology and Oceanography 34: 1153–1161.

    Article  Google Scholar 

  • Winterwerp, J.C., Z. Bing Wang, T. van der Kaaij, K. Verelst, A. Bijlsma, Y. Meersschaut, M. Sas, 2006. Flow velocity profiles in the Lower Scheldt estuary. Ocean Dynamics 56: 284–294.

    Article  Google Scholar 

  • Wroblewski, J. S., 1977. A model of phytoplankton plume formation during variable Oregon upwelling. Journal of Marine Research 35: 357–394.

    CAS  Google Scholar 

Download references

Acknowledgments

The author Jaya Naithani is grateful to Dr Klaas Deneudt for all the help provided in locating the data. Thanks are also due to the two reviewers for their careful, critical, and constructive comments. This research was conducted in the framework of the Interuniversity Attraction Pole TIMOTHY (IAP VI. 13), funded by Belgian Science Policy (BELSPO), and the project “Taking up the challenge of multi-scale marine modelling”, which is funded by the Communauté Fran?aise de Belgique under contract ARC10/15-028 (Actions de recherche concertées) with the aim of developing and applying SLIM. Computational resources were provided by the supercomputing facilities of the Université catholique de Louvain (CISM/UCL) and the Consortium des Equipment de Calcul Intensif en Féderation Wallonie Bruxelles (CECI) funded by the Fond de la Recherche Scientifique de Belgique (FRS-FNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Naithani.

Additional information

Handling editor: Koen Martens

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naithani, J., de Brye, B., Buyze, E. et al. An ecological model for the Scheldt estuary and tidal rivers ecosystem: spatial and temporal variability of plankton. Hydrobiologia 775, 51–67 (2016). https://doi.org/10.1007/s10750-016-2710-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2710-1

Keywords

Navigation