Skip to main content
Log in

Seasonal dietary shift to zooplankton influences stable isotope ratios and total mercury concentrations in Arctic charr (Salvelinus alpinus (L.))

  • CHARR II
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Seasonal dietary shifts by Arctic charr (Salvelinus alpinus (L.)) are common in subarctic lakes, but less is known about how the shift to pelagic zooplankton feeding during the growing season affects stable isotope ratios and mercury concentrations. We sampled Arctic charr, zooplankton and benthic macroinvertebrates from oligotrophic Lake Galggojavri, northern Norway, in June, August and September. Stomach content, age, total length, weight, condition and sex were recorded for all individuals, and liver and muscle tissues were sampled for stable isotope (δ13C, δ15N) and total mercury analyses. We predicted that a dietary shift to zooplankton would lead to depleted 13C and increased mercury levels in charr. Arctic charr consumed benthic prey in June, but shifted to zooplankton feeding in August–September. Stable isotope mixing models revealed increased pelagic reliance towards September. Mercury content in liver increased from June to September, whereas muscle showed opposite trend. In stepwise multiple regression analyses, mercury content in muscle was explained by fish length, month and δ13C (R 2 = 0.46), whereas in liver month, δ13C and δ15N were the main explaining factors (R 2 = 0.69). Seasonal dietary shifts appeared to have an effect on total mercury content in charr, and thus sampling month should be considered when designing future monitoring programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amlund, H., A.-K. Lundebye & M. H. G. Berntssen, 2007. Accumulation and elimination of methylmercury in Atlantic cod (Gadus morhua L.) following dietary exposure. Aquatic Toxicology 83: 323–330.

    Article  CAS  PubMed  Google Scholar 

  • Amundsen, P.-A. & R. Knudsen, 2009. Winter ecology of Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) in a subarctic lake, Norway. Aquatic Ecology 43: 765–775.

    Article  CAS  Google Scholar 

  • Amundsen, P.-A., N. A. Kashulin, P. Terentjev, K. Ø. Gjelland, I. M. Koroleva, V. A. Dauvalter, S. Sandimirov, A. Kashulin & R. Knudsen, 2011. Heavy metal contents in whitefish (Coregonus lavaretus) along a pollution gradient in a subarctic watercourse. Environmental Monitoring and Assessment 182: 301–316.

    Article  CAS  PubMed  Google Scholar 

  • Amundsen, P.-A., F. J. Staldvik, A. A. Lukin, N. A. Kashulin, O. A. Popova & Y. S. Reshetnikov, 1997. Heavy metal contamination in freshwater fish from the border region between Norway and Russia. Science of the Total Environment 201: 211–224.

    Article  CAS  PubMed  Google Scholar 

  • Braaten, H. F. V., E. Fjeld, S. Rognerud, E. Lund & T. Larssen, 2014. Seasonal and year-to-year variation of mercury concentration in perch (Perca fluviatilis) in boreal lakes. Environmental Toxicology and Chemistry 33: 2661–2670.

    Article  CAS  PubMed  Google Scholar 

  • Carrie, J., F. Wang, H. Sanei, R. W. MacDonald, P. M. Outridge & G. A. Stern, 2010. Increasing contaminant burdens in an Arctic fish, burbot (Lota lota), in a warming climate. Environmental Science & Technology 44: 316–322.

    Article  CAS  Google Scholar 

  • Chételat, J. & M. Amyot, 2009. Elevated methylmercury in High Arctic Daphnia and the role of productivity in controlling their distribution. Global Change Biology 15: 706–718.

    Article  Google Scholar 

  • Chételat, J., M. Amyot & E. Garcia, 2011. Habitat-specific bioaccumulation of methylmercury in invertebrates of small mid-latitude lakes in North America. Environmental Pollution 159: 10–17.

    Article  PubMed  Google Scholar 

  • Chumchal, M. M., T. R. Rainwater, S. C. Osborn, A. P. Roberts, M. T. Abel, G. P. Cobb, P. N. Smith & F. C. Bailey, 2011. Mercury speciation and biomagnification in the food web of Caddo Lake, Texas and Lousiana, USA, a subtropical freshwater ecosystem. Environmental Toxicology and Chemistry 30: 1153–1162.

    Article  CAS  PubMed  Google Scholar 

  • Cizdziel, J., T. Hinners, C. Cross & J. Pollard, 2003. Distribution of mercury in the tissues of five species of freshwater fish from Lake Mead, USA. Journal of Environmental Monitoring 5: 802–807.

    Article  CAS  PubMed  Google Scholar 

  • Douglas, T. A., L. L. Loseto, R. W. Macdonald, P. Outridge, A. Dommergue, A. Poulain, M. Amyot, T. Barkay, T. Berg, J. Chételat, P. Constant, M. Evans, C. Ferrari, N. Gantner, M. S. Johnson, J. Kirk, N. Kroer, C. Larose, D. Lean, T. G. Nielsen, L. Poissant, S. Rognerud, H. Skov, S. Sørensen, F. Wang, S. Wilson & C. M. Zdanowicz, 2012. The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review. Environmental Chemistry 9: 321–355.

    Article  CAS  Google Scholar 

  • Downs, S. G., C. L. Macleod & J. N. Lester, 1998. Mercury in precipitation and its relation to bioaccumulation in fish: a literature review. Water, Air, and Soil Pollution 108: 149–187.

    Article  CAS  Google Scholar 

  • Drenner, R. W., R. J. Strickler & J. W. O’Brien, 1978. Capture probability: the role of zooplankter escape in the selective feeding of planktivorous fish. Journal of the Fisheries Research Board of Canada 35: 1370–1373.

    Article  Google Scholar 

  • Drevnick, P. E., A. P. Roberts, R. R. Otter, C. R. Hammerschmidt, R. Klaper & J. T. Oris, 2008. Mercury toxicity in livers of northern pike (Esox lucius) from Isle Royale, USA. Comparative Biochemistry and Physiology, Part C 147: 331–338.

    Google Scholar 

  • Eloranta, A. P., K. K. Kahilainen & R. I. Jones, 2010. Seasonal and ontogenetic shifts in diet of Arctic charr Salvelinus alpinus (L.) in a subarctic lake. Journal of Fish Biology 77: 80–97.

    Article  CAS  PubMed  Google Scholar 

  • Eloranta, A. P., H. L. Mariash, M. Rautio & M. Power, 2013. Lipid-rich zooplankton subsidise the winter diet of benthivorous Arctic charr (Salvelinus alpinus) in a subarctic lake. Freshwater Biology 58: 2541–2554.

    Article  Google Scholar 

  • Eloranta, A. P., K. K. Kahilainen, P.-A. Amundsen, R. Knudsen, C. Harrod & R. I. Jones, 2015. Lake size and fish diversity determine resource use and trophic position of a top predator in high-latitude lakes. Ecology and Evolution 5: 1664–1675.

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans, M., D. Muir, R. B. Brua, J. Keating & X. Wang, 2013. Mercury trends in predatory fish in Great Slave Lake: the influence of temperature and other climate drivers. Environmental Science & Technology 47: 12793–12801.

    Article  CAS  Google Scholar 

  • Farkas, A., J. Salanki & A. Specziar, 2003. Age- and size-specific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low-contaminated site. Water Research 37: 959–964.

    Article  CAS  PubMed  Google Scholar 

  • Foster, E. P., D. L. Drake & G. DiDomenico, 2000. Seasonal changes and tissue distribution of mercury in largemouth bass (Micropterus salmoides) from Dorena Reservoir, Oregon. Archives of Environmental Contamination and Toxicology 38: 78–82.

    Article  CAS  PubMed  Google Scholar 

  • Froese, R., 2006. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. Journal of Applied Ichthyology 22: 241–253.

    Article  Google Scholar 

  • Gantner, N., M. Power, D. Iqaluk, M. Meili, H. Borg, M. Sundbom, K. R. Solomon, G. Lawson & D. C. Muir, 2010a. Mercury concentrations in landlocked Arctic char (Salvelinus alpinus) from the Canadian Arctic. Part I: Insights from trophic relationships in 18 lakes. Environmental Toxicology and Chemistry 29: 621–632.

    Article  CAS  PubMed  Google Scholar 

  • Gantner, N., D. C. Muir, M. Power, D. Iqaluk, J. D. Reist, J. A. Babaluk, M. Meili, H. Borg, J. Hammar, W. Michaud, B. Dempson & K. R. Solomon, 2010b. Mercury concentrations in landlocked Arctic char (Salvelinus alpinus) from the Canadian Arctic. Part II: influence of lake biotic and abiotic characteristics on geographic trends in 27 populations. Environmental Toxicology and Chemistry 29: 633–643.

    Article  CAS  PubMed  Google Scholar 

  • Harrod, C., J. Mallela & K. K. Kahilainen, 2010. Phenotype-environment correlations in a putative whitefish adaptive radiation. Journal of Animal Ecology 79: 1057–1068.

    Article  PubMed  Google Scholar 

  • Hayden, B., C. Harrod & K. K. Kahilainen, 2013. The effects of winter ice cover on the trophic ecology of whitefish (Coregonus lavaretus L.) in subarctic lakes. Ecology of Freshwater Fish 22: 192–201.

    Article  Google Scholar 

  • Hayden, B., C. Harrod & K. K. Kahilainen, 2014. Dual-fuels: intra-annual variation in the relative importance of benthic and pelagic resources to maintenance, growth and reproduction in a generalist salmonid fish. Journal of Animal Ecology 83: 1501–1512.

    Article  PubMed  Google Scholar 

  • Hayden, B., C. Harrod, E. Sonninen & K. K. Kahilainen, 2015. Seasonal depletion of resources intensifies trophic interactions in subarctic freshwater fish communities. Freshwater Biology 60: 1000–1015.

    Article  Google Scholar 

  • Jørgensen, E. H., S. J. S. Johansen & M. Jobling, 1997. Seasonal patterns of growth, lipid deposition and lipid depletion in anadromous Arctic charr. Journal of Fish Biology 51: 312–326.

    Article  Google Scholar 

  • Kahilainen, K. & H. Lehtonen, 2002. Brown trout (Salmo trutta L.) and Arctic charr (Salvelinus alpinus (L.)) as predators on three sympatric whitefish (Coregonus lavaretus (L.)) forms in the subarctic Lake Muddusjärvi. Ecology of Freshwater Fish 11: 158–167.

    Article  Google Scholar 

  • Kahilainen, K., H. Lehtonen & K. Könönen, 2003. Consequence of habitat segregation to growth rate of two sparsely rakered whitefish forms (Coregonus lavaretus (L.)) in a subarctic lake. Ecology of Freshwater Fish 12: 275–285.

    Article  Google Scholar 

  • Kahilainen, K., E. Alajärvi & H. Lehtonen, 2005. Planktivory and diet-overlap of densely rakered whitefish (Coregonus lavaretus (L.)) in a subarctic lake. Ecology of Freshwater Fish 14: 50–58.

    Article  Google Scholar 

  • Kahilainen, K. K., T. Malinen & H. Lehtonen, 2009. Polar light regime and piscivory govern diel vertical migrations of planktivorous fish and zooplankton in a subarctic lake. Ecology of Freshwater Fish 18: 481–490.

    Article  Google Scholar 

  • Kainz, M. J., M. Lucotte & C. C. Parrish, 2003. Relationships between organic matter composition and methyl mercury content of offshore and carbon-rich littoral sediments in an oligotrophic lake. Canadian Journal of Fisheries and Aquatic Sciences 60: 888–896.

    Article  CAS  Google Scholar 

  • Karlsson, J. & P. Byström, 2005. Littoral energy mobilization dominates energy supply for top consumers in subarctic lakes. Limnology and Oceanography 50: 538–543.

    Article  CAS  Google Scholar 

  • Kiljunen, M., J. Grey, T. Sinisalo, C. Harrod, H. Immonen & R. I. Jones, 2006. A revised model for lipid-normalising δ13C values from aquatic organisms, with implications for isotope mixing models. Journal of Applied Ecology 43: 1213–1222.

    Article  CAS  Google Scholar 

  • Klemetsen, A., 2013. The most variable vertebrate on earth. Journal of Ichthyology 10: 781–791.

    Article  Google Scholar 

  • Klemetsen, A., P.-A. Amundsen, J. B. Dempson, B. Jonsson, N. Jonsson, M. F. O’Connell & E. Mortensen, 2003. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecology of Freshwater Fish 12: 1–59.

    Article  Google Scholar 

  • Knudsen, R., A. Klemetsen, P.-A. Amundsen & B. Hermansen, 2006. Incipient speciation through niche expansion: an example from the Arctic charr in a subarctic lake. Proceedings of the Royal Society B: Biological Sciences 273: 2291–2298.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavoie, R. A., T. D. Jardine, M. M. Chumchal, K. A. Kidd & L. M. Campbell, 2013. Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environmental Science and Technology 47: 13385–13394.

    Article  CAS  PubMed  Google Scholar 

  • Layman, C. A., M. S. Araújo, R. Boucek, C. M. Hammerschlag-Peyer, E. Harrison, Z. R. Jud, P. Matich, A. E. Rosenblatt, J. J. Vaudo, L. A. Yeager, D. M. Post & S. Bearhop, 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biological Reviews 87: 545–562.

    Article  PubMed  Google Scholar 

  • Lescord, G. L., K. A. Kidd, J. L. Kirk, N. J. O’Driscoll, X. Wang & D. C. G. Muir, 2015. Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic. Science of the Total Environment 509–510: 195–205.

    Article  PubMed  Google Scholar 

  • Levins, R., 1968. Evolution in Changing Environments: Some Theoretical Explorations. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Lindholm, M., H. A. de Wit, T. E. Eriksen & H. F. V. Braaten, 2014. The influence of littoral on mercury bioaccumulation in a humic lake. Water, Air, and Soil Pollution 225: 2141.

    Article  Google Scholar 

  • Mason, R. P., J. R. Reinfelder & F. M. M. Morel, 1995. Bioaccumulation of mercury and methylmercury. Water, Air, and Soil Pollution 80: 915–921.

    Article  CAS  Google Scholar 

  • Monson, B. A. & P. L. Brezonik, 1998. Seasonal pattern of mercury species in water and plankton from softwater lakes in Northeastern Minnesota. Biogeochemistry 40: 147–162.

    Article  CAS  Google Scholar 

  • Morel, F. M. M., A. M. L. Kraepiel & M. Amyot, 1998. The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics 29: 543–566.

    Article  Google Scholar 

  • Moreno, C. E., E. Fjeld, M. K. Deshar & E. Lydersen, 2015. Seasonal variation of mercury and δ15N in fish from Lake Heddalsvatn, southern Norway. Journal of Limnology 74: 21–30.

    Google Scholar 

  • Nguyen, H. L., M. Leermakers, S. Kurunczi, L. Bozo & W. Baeyens, 2005. Mercury distribution and speciation in Lake Balaton, Hungary. Science of the Total Environment 340: 231–246.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira Ribeiro, C. A., C. Rouleau, E. Pelletier, C. Audet & H. Tjäve, 1999. Distribution kinetics of dietary methylmercury in the Arctic charr (Salvelinus alpinus). Environmental Science and Technology 33: 902–907.

    Article  Google Scholar 

  • Parnell, A. C., R. Inger, S. Bearhop & A. L. Jackson, 2010. Source partitioning using stable isotopes: coping with too much variation. PLoS One 5: e9672.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perga, M. E. & D. Gerdeaux, 2005. ’Are fish what they eat’ all year round? Oecologia 144: 598–606.

    Article  CAS  PubMed  Google Scholar 

  • Pickhardt, P. C., C. L. Folt, C. Y. Chen, B. Klaue & J. D. Blum, 2005. Impacts of zooplankton composition and algal enrichment on the accumulation of mercury in an experimental freshwater food web. Science of the Total Environment 339: 89–101.

    Article  CAS  PubMed  Google Scholar 

  • Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.

    Article  Google Scholar 

  • Power, M., G. M. Klein, K. R. R. A. Guiguer & M. K. H. Kwan, 2002. Mercury accumulation in the fish community of a sub-Arctic lake in relation to trophic position and carbon sources. Journal of Applied Ecology 39: 819–830.

    Article  CAS  Google Scholar 

  • R Development Core Team, 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Riget, F., G. Asmund & P. Aastrup, 2000. Mercury in Arctic charr (Salvelinus alpinus) populations from Greenland. Science of the Total Environment 245: 161–172.

    Article  CAS  PubMed  Google Scholar 

  • Riget, F., B. Braune, A. Bignert, S. Wilson, J. Aars, E. Born, M. Dam, R. Dietz, M. Evans, T. Evans, M. Gamber, N. Gantner, N. Green, H. Gunnlaugsdottir, K. Kannan, R. Letcher, D. Muir, P. Roach, C. Sonne, G. Stern & Ø. Wiig, 2011. Temporal trends of Hg in Arctic biota, an update. Science of the Total Environment 409: 3520–3526.

    Article  CAS  PubMed  Google Scholar 

  • Schoener, T. W., 1968. The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49: 704–726.

    Article  Google Scholar 

  • Shikano, T., A. Järvinen, P. Marjamäki, K. K. Kahilainen & J. Merilä, 2015. Genetic variability and structuring of the Arctic charr (Salvelinus alpinus) populations in northern Fennoscandia. PloS One 10: e0140344.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sierszen, M. E., M. E. McDonald & D. A. Jensen, 2003. Benthos as the basis for arctic lake food webs. Aquatic Ecology 37: 437–445.

    Article  Google Scholar 

  • Suchanek, T. H., C. A. Eagles-Smith, D. G. Slotton, E. J. Harner, D. P. Adam, A. E. Colwell, N. L. Anderson & D. L. Woodward, 2008a. Mine-derived mercury: effects on lower trophic species in Clear Lake, California. Ecological Applications 18: A158–A176.

    Article  PubMed  Google Scholar 

  • Suchanek, T. H., C. A. Eagles-Smith & E. J. Harner, 2008b. Is Clear Lake methylmercury distribution decoupled from bulk mercury loading? Ecological Applications 18: A107–A127.

    Article  PubMed  Google Scholar 

  • Swynnerton, G. H. & E. B. Worthington, 1940. Note on the food of fish in Haweswater (Westmorland). Journal of Animal Ecology 9: 183–187.

    Article  Google Scholar 

  • Thomas, S. M. & T. W. Crowther, 2015. Predicting rates of isotopic turnover across the animal kingdom: a synthesis of existing data. Journal of Animal Ecology 84: 861–870.

    Article  PubMed  Google Scholar 

  • Thomas, S. M., M. Kiljunen, T. Malinen, A. P. Eloranta, P.-A. Amundsen, M. Lodenius & K. K. Kahilainen, 2016. Food-web structure and mercury dynamics in a large subarctic lake following multiple species introductions. Freshwater Biology. doi:10.1111/fwb.12723.

    Google Scholar 

  • Van Walleghem, J. L. A., P. J. Blanchfield & H. Hintelman, 2007. Elimination of mercury by yellow perch in the wild. Environmental Science and Technology 41: 5895–5901.

    Article  PubMed  Google Scholar 

  • Wang, X. & W.-X. Wang, 2015. Physiologically based pharmacokinetic model for inorganic and methylmercury in a marine fish. Environmental Science and Technology 49: 10173–10181.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to T. Holopainen, O. Kalttopää, K. Leinonen, T. Lepistö, O. Saari and E. Tulisalo for their help in field and laboratory work. Kilpisjärvi Biological Station provided excellent facilities during the study. Financial support for the study was obtained from European Regional Developmental Fund (A30205) and Academy of Finland (1140903, 1268566). We thank Guest editors M. Power and M. Jobling as well as the anonymous referees for their constructive comments on previous versions of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Kahilainen.

Additional information

Guest editors: M. Power, R. Knudsen, C. Adams, M. J. Hansen, J. B. Dempson, M. Jobling & M. Ferguson / Advances in Charr Ecology and Evolution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahilainen, K.K., Thomas, S.M., Keva, O. et al. Seasonal dietary shift to zooplankton influences stable isotope ratios and total mercury concentrations in Arctic charr (Salvelinus alpinus (L.)). Hydrobiologia 783, 47–63 (2016). https://doi.org/10.1007/s10750-016-2685-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2685-y

Keywords

Navigation