Skip to main content

Advertisement

Log in

Patterns of diversity in marine Gastrotricha from Southeastern Brazilian Coast is predicted by sediment textures

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Broad spatial variations of biodiversity are associated with patterns and processes at different scales, and are well known for large terrestrial animals. For the interstitial microscopic fauna a wide distribution conception is accepted for several phyla. This assumption is being revised since more information has become available on their biogeography and general macroecological threats. This study analyzed the variability of marine Gastrotricha diversity among benthic habitats and localities along the Brazilian coast. We tested the hypothesis that sediment textures, location, tidal zones, and their interactions, are potential explanatory variables that affect the Gastrotricha diversity. Richness estimates, species composition, and beta diversity were used as response variables of biodiversity. The number of gastrotrichs, macrodasyids, and chaetonotids species was mostly explained by sediment sorting and the highest richness was detected in poorly sorted sediments. Species composition and beta diversity were correlated with tidal zone, location, and average grain size, and the highest turnover of species was expected on islands. The general diversity patterns observed in our study that were explained by sediment textures, tidal zones, and localities, are expected to be observed along other marine coastlines in the world and may be correlated with sediment transport and deposition processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Appeltans, W., S. T. Ahyong, G. Anderson, M. V. Angel, T. Artois, N. Bailly, R. Bamber, A. Barber, I. Bartsch, A. Berta, et al., 2012. The magnitude of global marine species diversity. Current Biology 22: 2189–2202.

    Article  CAS  PubMed  Google Scholar 

  • Araujo, T. Q., M. Balsamo & A. R. S. Garraffoni, 2014. A new species of Pseudostomodella (Gastrotricha, Thaumastodermatidae) from Brazil. Marine Biodiversity 44: 243–248.

    Article  Google Scholar 

  • Balsamo, M. & M. A. Todaro, 2002. Gastrotricha. In Rundle, S. D., A. Robertson & J. Schmidt-Araya (eds), Freshwater Meiofauna: Biology and Ecology. Backhuys, Leiden: 45–61.

    Google Scholar 

  • Balsamo, M., J. L. d’Hondt, L. Pierboni & P. Grilli, 2009. Taxonomic and nomenclatural notes on freshwater Gastrotricha. Zootaxa 2158: 1–19.

    Google Scholar 

  • Balsamo, M., L. Guidi & J. L. d’Hondt, 2013. Phylum Gastrotricha. Zootaxa 3703: 79–82.

    Article  Google Scholar 

  • Balsamo, M., J. d`Hondt, J. Kisielewski, M. Todaro, P. Tongiorgi, L. Guidi, P. Grilli & Y. de Jong, 2015. Fauna Europaea: Gastrotricha. Biodiversity Data Journal 3: e5800.

    Article  PubMed  Google Scholar 

  • Barton, P. S., S. A. Cunningham, A. D. Manning, H. Gibb, D. B. Lindenmayer & R. K. Didham, 2013. The spatial scaling of beta diversity. Global Ecology and Biogeography 22: 639–647.

    Article  Google Scholar 

  • Bartoń, K., 2015. Package ‘MuMIn’: Multi-model inference. R package version 1.15.1. https://cran.r-project.org/web/packages/MuMIn/index.html. Accessed 2015 Apr 10.

  • Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19: 134–143.

    Article  Google Scholar 

  • Baselga, A. & C. Orme, 2012. Betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution 3: 808–812.

    Article  Google Scholar 

  • Bivand, R., M. Altman, L. Anselin, R. Assunção, O. Berke, A. Bernat, et al., 2013. Spdep: Spatial Dependence: Weighting Schemes, Statistics and Models. R package version 0.5-56 available at http://CRAN.R-project.org/package=spdep.

  • Buchanan, J. B., 1984. Sediment analysis. In Holme, N. A. & A. D. McIntyre (eds), Methods to Study the Marine Benthos, Vol 16, IPH Handbook. Blackwell Scientific Publications, London: 41–65.

    Google Scholar 

  • Carugati, L., C. Corinaldesi, A. Dell’Anno, A. R. Danovaro, 2015. Metagenetic tools for the census of marine meiofaunal biodiversity: an overview. [available on internet at http://www.dx.doi.org/10.1016/j.margen.2015.04.010] (in press).

  • Casu, M. & M. Curini-Galletti, 2004. Sibling species in interstitial flatworms: a case study using Monocelis lineata (Proseriata: Monocelididae). Marine Biology 145: 669–679.

    Google Scholar 

  • Chase, J. M., N. J. B. Kraft, K. G. Smith, M. Vellend & B. D. Inouye, 2011. Using null models to disentangle variation in community dissimilarity from variation in alpha-diversity. Ecosphere 2: 1–11.

    Article  Google Scholar 

  • Colwell, R. K. & J. A. Coddington, 1994. Estimating the extent of terrestrial biodiversity through extrapolation. Philosophical Transaction of the Royal Society of London 345: 101–118.

    Article  CAS  Google Scholar 

  • Couto, E. C. G., F. L. Silveira & G. R. A. Rocha, 2006. Marine Brazilian biodiversity: the current status. Gayana 67: 327–340.

    Google Scholar 

  • Curini-Galletti, M., T. Artois, V. Delogu, W. H. De Smet, D. Fontaneto, U. Jondelius, F. Leasi, A. Martínez, I. Meyer-Wachsmuth, K. S. Nilsson, P. Tongiorgi, K. Worsaae & M. A. Todaro, 2012. Patterns of diversity in soft-bodied meiofauna: dispersal ability and body size matter. PLoS One 7: e33801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derycke, S., T. Remerie, A. Vierstraete, T. Backeljau, J. Vanfleteren, M. Vincx & T. Moens, 2005. Mitochondrial DNA variation and cryptic speciation within the free-living marine nematode Pellioditis marina. Marine Ecology Progress Series 300: 91–103.

    Article  CAS  Google Scholar 

  • Diniz-Filho, J. A. F., L. M. Bini & B. A. Hawkins, 2003. Spatial autocorrelation and red herrings in geographical ecology. Global Ecology and Biogeography 12(1): 53–64.

    Article  Google Scholar 

  • Dominguez, J. M. L., 2006. The coastal zone of Brazil: an overview. Journal of Coastal Research 39: 16–20.

    Google Scholar 

  • Faurby, S. & P. Funch, 2011. Size is not everything: a meta-analysis of geographic variation in microscopic eukaryotes. Global Ecology and Biogeography 20: 475–485.

    Article  Google Scholar 

  • Finlay, B. J. & T. F. Fenchel, 2004. Cosmopolitan metapopulations of free-living microbial eukaryotes. Protist 155: 237–244.

    Article  PubMed  Google Scholar 

  • Foissner, W., 2006. Biogeography and dispersal of microorganisms: a review emphasizing protists. Acta Protozoologica 45: 111–136.

    Google Scholar 

  • Foissner, W., 2008. Protist diversity and distribution: some basic considerations. Biodiversity and Conservation 17: 235–242.

    Article  Google Scholar 

  • Folk, R. L. & W. C. Ward, 1957. Brazos River Bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology 27: 3–26.

    Article  Google Scholar 

  • Fonseca, G. & S. A. Netto, 2015. Macroecological patterns of estuarine nematodes. Estuaries and Coasts 38: 612–619.

    Article  Google Scholar 

  • Fontaneto, D., 2011. Biogeography of microscopic organisms, is everything small everywhere?. Systematics Association & Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Fontaneto, D., G. F. Ficetola, R. Ambrosini & C. Ricci, 2006. Patterns of diversity in microscopic animals: are they comparable to those in protists or in larger animals? Global Ecology and Biogeography 15: 153–162.

    Article  Google Scholar 

  • Forneris, L., 1985. Manual de técnicas para a preparação de coleções zoológicas. Sociedade Brasileira de Zoologia, São Paulo.

    Google Scholar 

  • Gaston, K. J., 2000. Global patterns in biodiversity. Nature 405: 220–227.

    Article  CAS  PubMed  Google Scholar 

  • Giere, O., 2009. Meiobenthology. The Microscopic Motile Fauna of Aquatic Sediments, 2nd ed. Springer, Berlin.

    Google Scholar 

  • Gilbert, E. R., M. G. De Camargo & L. Sandrini-Neto, 2014. Rysgran: Grain size analysis, textural classifications and distribution of unconsolidated sediments. R package version 2.1.0 [available on internet at https://www.cran.r-project.org/web/packages/rysgran/index.html].

  • Higgins, R. P. & H. Thiel, 1988. Introduction to the Study of Meiofauna. Smithsonian Institution Press, Washington, DC, London.

    Google Scholar 

  • Hochberg, R., 1999. Spatiotemporal size-class distribution of Turbanella mustela (Gastrotricha: Macrodasyida) on a northern California beach and its effect on tidal suspension. Pacific Science 216: 50–60.

    Google Scholar 

  • Hochberg, R., 2008. Gastrotricha of Bocas del Toro, Panama: a preliminary report. Meiofauna Marina 16: 101–108.

    Google Scholar 

  • Hochberg, R., 2014. Crasiella fonseci, a new species of Gastrotricha (Macrodasyida, Planodasyidae) from São Paulo, Brazil. Marine Biodiversity 44: 237–242.

    Article  Google Scholar 

  • Hochberg, R. & S. Atherton, 2010. Acanthodasys caribbeanensis sp. nov., a new species of Thaumastodermatidae (Gastrotricha, Macrodasyida) from Belize and Panama. Zookeys 61: 1–10.

    Article  PubMed  Google Scholar 

  • Hummon, W. D. & M. A. Todaro, 2010. Analytic taxonomy and notes on marine, brackish-water and estuarine Gastrotricha. Zootaxa 2392: 1–32.

    Google Scholar 

  • Kieneke, A., P. M. Martinez-Arbizu & D. Fontaneto, 2012. Spatially structured populations with a low level of cryptic diversity in European marine Gastrotricha. Molecular Ecology 21: 1239–1254.

    Article  PubMed  Google Scholar 

  • Kissling, W. D. & G. Carl, 2008. Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecology and Biogeography 17: 59–71.

    Article  Google Scholar 

  • Koleff, P., K. J. Gaston & J. J. Lennon, 2003. Measuring beta diversity for presence-absence data. Journal of Animal Ecology 72: 367–382.

    Article  Google Scholar 

  • Krzywinski, M. & N. Altman, 2014. Points of significance: visualizing samples with box plots. Nature Methods 11: 119–120.

    Article  CAS  PubMed  Google Scholar 

  • Migotto, A. E., A. C. Z. Amaral & C. E. F. Rocha, 2011. Litoral Norte de São Paulo. In Amaral, A. C. Z. & S. A. H. Nallin (eds), Biodiversidade e ecossistemas bentônicos marinhos do Litoral Norte de São Paulo. Sudeste do Brasil, Campinas: 23–26.

    Google Scholar 

  • Mountford, M. D., 1962. An index of similarity and its application to classification problems. In Murphy, P. W. (ed.), Progress in Soil Zoology. Butterworths, London: 43–50.

    Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner. 2013. Vegan: Community Ecology Package. R package version 2.0-10. [available on internet at http://www.CRAN.R-project.org/package=vegan].

  • R Development Core Team, 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Todaro, M. A., 1992. Contribution to the study of the Mediterranean meiofauna: Gastrotricha from the Island of Ponza, Italy. Bollettino di Zoologia 59: 321–333.

    Article  Google Scholar 

  • Todaro, M. A., 2012. A new marine gastrotrich from the State of São Paulo (Brazil), with a key to species of Pseudostomella (Gastrotricha, Thaumastodermatidae). ZooKeys 223: 39–51.

    Article  PubMed  Google Scholar 

  • Todaro, M. A., 2013. A new non-naked species of Ptychostomella (Gastrotricha) from Brazil. ZooKeys 289: 13–24.

    Article  PubMed  Google Scholar 

  • Todaro, M. A., 2015 Marine. In Gastrotricha World Portal. Todaro, M. A. (ed.) [available on internet at http://www.gastrotricha.unimore.it/marine.htm]. Accessed 09 Nov 2015.

  • Todaro, M. A. & W. D. Hummon, 2008. An overview and a dichotomous key to genera of the phylum Gastrotricha. Meiofauna Marina 16: 3–20.

    Google Scholar 

  • Todaro, M. A. & C. E. F. Rocha, 2004. Diversity and distribution of marine Gastrotricha along the northern beaches of the State of São Paulo (Brazil), with description of a new species of Macrodasys (Macrodasyida, Macrodasyidae). Journal of Natural History 38: 1605–1634.

    Article  Google Scholar 

  • Todaro, M. A. & C. E. F. Rocha, 2005. Further data on marine gastrotrichs from the State of São Paulo and the first records from the State of Rio de Janeiro (Brazil). Meiofauna Marina 14: 27–31.

    Google Scholar 

  • Todaro, M. A. & C. E. F. Rocha, 2011. Gastrotricha. In Amaral, A. C. Z. & S. A. H. Nallin (eds), Biodiversidade e ecossistemas bentônicos marinhos do Litoral Norte de São Paulo. Sudeste do Brasil, Campinas: 100–105.

    Google Scholar 

  • Todaro, M. A., J. W. Fleeger & W. D. Hummon, 1995. Marine gastrotrichs from the sand beaches of the northern Gulf of Mexico: species list and distribution. Hydrobiologia 310: 107–117.

    Article  Google Scholar 

  • Todaro, M. A., J. W. Fleeger, Y. P. Hu, A. W. Hrincevich & D. W. Foltz, 1996. Are meiofauna species cosmopolitan? Morphological and molecular analysis of Xenotrichula intermedia (Gastrotricha: Chaetonotida). Marine Biology 125: 735–742.

    Article  Google Scholar 

  • Todaro, M. A., M. Dal Zotto, U. Jondelius, R. Hochberg, W. D. Hummon, T. Kanneby & C. E. F. Rocha, 2012. Gastrotricha: a marine sister for a freshwater puzzle. PLoS One 7(2): e31740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todaro, M. A., F. Leasi & R. Hochberg, 2014. A new species, genus and family of marine Gastrotricha from Jamaica, with a phylogenetic analysis of Macrodasyida based on molecular data. Systematics and Biodiversity 12: 473–488.

    Article  Google Scholar 

  • Todaro, M. A., M. Dal Zotto & F. Leasi, 2015. An integrated morphological and molecular approach to the description and systematisation of a novel genus and species of Macrodasyida (Gastrotricha). PLoS One 10(7): e0130278.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wentworth, C. K., 1922. A scale of grade and class terms for clastic sediments. Journal of Geology 30: 377–392.

    Article  Google Scholar 

  • Westheide, W. & H. Schmidt, 2003. Cosmopolitan versus cryptic meiofaunal polychaete species: an approach to a molecular taxonomy. Helgoland Marine Research 57: 1–6.

    Google Scholar 

  • Wright, J., A. Colling & D. Park, 1999. Waves, Tides, and Shallow-water Process. Open University. Oceanography Course Team.

  • Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.

    Book  Google Scholar 

Download references

Acknowledgments

We are grateful for the elegant and complete data left by M.A. Todaro and C.E.F. Rocha on their papers from 2004 and 2005. This work was supported by grants from the São Paulo Research Foundation—FAPESP (2011/50317-5; 2012/08581-0) and from the National Council for Scientific and Technological Development—CNPq (306558/2010-6; 478825/2013-7). Two anonymous referees are also acknowledged for offering suggestions that greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André R. S. Garraffoni.

Additional information

Handling editor: Diego Fontaneto

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garraffoni, A.R.S., Di Domenico, M. & Amaral, A.C.Z. Patterns of diversity in marine Gastrotricha from Southeastern Brazilian Coast is predicted by sediment textures. Hydrobiologia 773, 105–116 (2016). https://doi.org/10.1007/s10750-016-2682-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2682-1

Keywords

Navigation