Skip to main content
Log in

Long-term and interannual changes of submerged macrophytes and their associated diaspore reservoir in a shallow southern Baltic Sea bay: influence of eutrophication and climate

  • SHALLOW LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Long-term and interannual changes in composition of submerged vegetation, diaspore reservoir and germination were investigated in the lagoon system Westrügensche Boddenkette, Baltic Sea, north-east Germany. Comparison with a survey from 1932, showed vegetation cover is similar to the past, maintaining high cover to depths of 2.8 m despite a period of eutrophication between about 1960 and 1990. Species dominance shifted, however, from small charophytes to larger species like Potamogeton pectinatus. We explain interannual vegetation changes by weather conditions. Such changes were observed in several species, most notably in Chara canescens. This annual species seems to be favoured by extensive winter ice cover. The diaspore reservoir and the germination success of submerged macrophytes do not mirror their frequency in the vegetation, but rather reflect life form strategies. Small oospores, mainly of annual charophytes, represented >97% of all diaspores but very few Chara oospores germinated. The numerous Tolypella oospores probably originated from a discrete period with high abundance during the 1950s and have completely failed to germinate. Angiosperm seeds are larger and less frequent but have higher germination success, especially Ruppia seeds. In conclusion, charophytes are outcompeted by larger angiosperms due to the combined effect of moderate eutrophication and climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bakker, E. S., E. Van Donk, S. A. J. Declerck, N. A. Helmsing, B. Hidding & B. A. Nolet, 2010. Effect of macrophyte community composition and nutrient enrichment on plant biomass and algal blooms. Basic and Applied Ecology 11: 432–439.

    Article  Google Scholar 

  • Bertsch, K., 1941. Früchte und Samen. Handbücher der praktischen Geschichtsforschung, Band 1, Verlag Ferdinand Enke, Stuttgart.

  • Blindow, I., 1992. Decline of charophytes during eutrophication: comparison with angiosperms. Freshwater Biology 28: 9–14.

    Article  Google Scholar 

  • Blindow, I. & J. Meyer, 2015. Submerse Makrophyten während Eutrophierung und Re-Mesotrophierung – ein Vergleich von inneren und äußeren Boddengewässern. Rostocker Meeresbiologische Beiträge 25: 105–118.

    Google Scholar 

  • Blindow, I., G. Andersson, A. Hargeby & S. Johansson, 1993. Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshwater Biology 30: 159–167.

    Article  Google Scholar 

  • Blume, M., I. Blindow, S. Dahlke & F. Vedder, 2009. Oospore variation in closely related Chara taxa. Journal of Phycology 45: 995–1002.

    Article  PubMed  Google Scholar 

  • Blümel, C., A. Domin, J. C. Krause, M. Schubert, U. Schiewer & H. Schubert, 2002. Der historische Makrophytenbewuchs der inneren Gewässer der deutschen Ostseeküste. Rostocker Meeresbiologische Beiträge 10: 5–111.

    Google Scholar 

  • Bonis, A. & P. Grillas, 2002. Deposition, germination and spatio-temporal patterns of charophyte propagule banks: a review. Aquatic Botany 72: 235–248.

    Article  Google Scholar 

  • Capon, S. J., A. J. J. Lynch, N. Bond, B. C. Chessman, J. Davis, N. Davidson, M. Finlayson, P. A. Gell, D. Hohnberg, C. Humphrey, R. T. Kingsford, D. Nielsen, J. R. Thomson, K. Ward & R. Mac Nally, 2015. Regime shifts, thresholds and multiple stable states in freshwater ecosystems: a critical appraisal of the evidence. Science of the Total Environment, in press.

  • Carpenter, S. R. & M. S. Adams, 1977. The macrophyte tissue nutrient pool of a hardwater eutrophic lake: implications for macrophyte harvesting. Aquatic Botany 3: 239–255.

    Article  CAS  Google Scholar 

  • Casanova, M. T. & M. A. Brock, 1996. Can oospore germination patterns explain charophyte distribution in permanent and temporary wetlands? Aquatic Botany 54: 297–312.

    Article  Google Scholar 

  • Dahlgren, S. & L. Kautsky, 2004. Can different vegetative states in shallow coastal bays of the Baltic Sea be linked to internal nutrient levels and external nutrient load? Hydrobiologia 514: 249–258.

    Article  CAS  Google Scholar 

  • de Winton, M. D., M. T. Casanova & J. S. Clayton, 2004. Charophyte germination and establishment under low irradiance. Aquatic Botany 79: 175–187.

    Article  Google Scholar 

  • Grillas, P., P. Garcia-Murillo, O. Geertz-Hansen, N. Marbá, C. Montes, C. M. Duarte, I. Tan Ham & A. Grossmann, 1993. Submerged macrophyte seed bank in a Mediterranean tempory marsh: abundance and relationship with established vegetation. Oecologia 94: 1–6.

    Article  Google Scholar 

  • Gurbisz, G., 2014. Unexpected resurgence of a large submersed plant bed in Chesapeake Bay: analysis of time series data. Limnology & Oceanography 59: 482–494.

    Article  CAS  Google Scholar 

  • Hansen, J. P., 2010. Effects of morphometric isolation and vegetation on the macroinvertebrate community in shallow Baltic Sea land-uplift bays. Doctoral thesis. Department of Botany, Stockholm University.

  • Hargeby, A., I. Blindow & G. Andersson, 2007. Long-term patterns of shifts between clear and turbid states in Lake Krankesjön and Lake Tåkern. Ecosystems 10: 28–35.

    Article  CAS  Google Scholar 

  • Hidding, B., R. J. Brederveld & B. A. Nolet, 2010. How a bottom-dweller beats the canopy: inhibition of an aquatic weed (Potamogeton pectinatus) by macroalgae (Chara spp.). Freshwater Biology 55: 1758–1768.

    Google Scholar 

  • Hilt, S., J. Köhler, R. Adrian, M. T. Monaghan & C. D. Sayer, 2013. Clear, crashing, turbid and back – long-term changes in macrophyte assemblages in a shallow lake. Freshwater Biology 58: 2027–2036.

    Article  Google Scholar 

  • Holzhausen, A., P. Nowak, C. Niedrig, M. Feike & H. Schubert, 2014. Morphometry of Chara aspera, C. canescens, C. baltica var. baltica, C. baltica var. liljebladii and C. intermedia oospores: Local variation versus taxonomic differences. Aquatic Botany 120: 60–66.

    Article  Google Scholar 

  • Hübel, H. & S. Dahlke, 1999. Die Nordrügenschen Boddengewässer – Entwicklung in Vergangenheit, Gegenwart und Zukunft. Bodden 7: 137–156.

    Google Scholar 

  • Hübel, H., C. Wolff & L.-A. Meyer-Reil, 1998. Salinity, inorganic nutrients and primary production in a shallow coastal inlet in the southern Baltic Sea (Nordrügensche Bodden). Results from long-term observations (1960–1989). International Review of Hydrobiology 83: 479–499.

    Article  Google Scholar 

  • Idestam-Almquist, J., 1998. Temporal and spatial variation of submersed aquatic plants in the Baltic Sea. Ph.D. Thesis, Department of Botany, Stockholm University. 216 pp.

  • Kalin, M. & M. P. Smith, 2007. Germination of Chara vulgaris and Nitella flexilis oospores: What are the relevant factors triggering germination? Aquatic Botany 87: 235–241.

    Article  Google Scholar 

  • Künzenbach, R., 1955/56. Über die Algenvegetation der Ostsee und der Boddengewässer um Hiddensee (Ostsee). Wissenschaftliche Zeitschrift der Universität Greifswald, Mathematisch-Naturwissenschaftliche Reihe 5/6: 373–388.

  • Landesamt für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern, 2013. Zur Entwicklung und zum Stand der Nährstoffbelastung der Küstengewässer Mecklenburg-Vorpommerns. Güstrow, Germany.

  • Levi, E. E., A. I. Çakiroğlu, T. Bucak, B. V. Odgaard, T. A. Davidson, E. Jeppesen & M. Beklioğlu, 2014. Similarity between contemporary vegetation and plant remains in the surface sediment in Mediterranean lakes. Freshwater Biology 59: 724–736.

    Article  CAS  Google Scholar 

  • McGlathery, K. J., M. A. Reidenbach, P. D’Odorico, S. Fagherazzi, M. L. Pace & J. H. Porter, 2013. Nonlinear dynamics and alternative stable states in shallow coastal systems. Oceanography 26: 220–231.

    Article  Google Scholar 

  • Moen, R. A. & Y. Cohen, 1989. Growth and competition between Potamogeton pectinatus L. and Myriophyllum exalbescens Fern. in experimental ecosystems. Aquatic Botany 33: 257–270.

    Article  Google Scholar 

  • Müller, C., 1932. Die Großalgenflora an den Küsten von Hiddensee in ihrer Beziehung zu Boden. Universität Greifswald, Wassertiefe und Salzgehalt.

    Google Scholar 

  • Müller-Stoll W. R., 1961. Meeresbiologische Exkursionen auf Hiddensee. Pädagogische Hochschule Potsdam.

  • Müller-Stoll, W. R. & R. Künzenbach, 1956. Über die standortbedingten Wuchsformen von Fucus vesiculosus in den Gewässern der Insel Hiddensee. Archiv für Protistenkunde 101: 289–334.

    Google Scholar 

  • Munkes, B., 2005. Eutrophication, phase shift, the delay and the potential return in the Greifswalder Bodden, Baltic Sea. Aquatic Sciences 67: 372–381.

    Article  CAS  Google Scholar 

  • Munsterhjelm, R., 1997. The aquatic macrophyte vegetation of flads and gloes, S coast of Finland. Acta Botanica Fennica 157: 1–68.

    Google Scholar 

  • Munsterhjelm, R., 2005. Natural succession and human-induced changes in the soft-bottom macrovegetation of shallow brackish bays on the southern coast of Finland. Doctoral Thesis, University of Helsinki, Finland.

  • Overbeck, J., 1965. Die Meeresalgen und ihre Gesellschaften an den Küsten der Insel Hiddensee (Ostsee). Botanica Marina 8: 218–233.

    Article  Google Scholar 

  • Pankow, H. & N. Wasmund, 1994. Produktionsbiologie und Soziologie des Makro- und Mikrophytobenthos der Darß-Zingster Boddenkette. Rostocker Meeresbiologische Beiträge 2: 61–68.

    Google Scholar 

  • Phillips, G. L., D. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Botany 4: 103–126.

    Article  Google Scholar 

  • Pitkänen, H., M. Peuraniemi, M. Westerbom, M. Kilpi & M. von Numers, 2013. Long-term changes in distribution and frequency of aquatic vascular plants and charophytes in an estuary in the Baltic Sea. Annales Botanici Fennici 50 (Suppl. A): 1–54.

  • Riddin, T. & J. B. Adams, 2009. The seed banks of two temporarily open/closed estuaries in South Africa. Aquatic Botany 90: 328–332.

    Article  Google Scholar 

  • Rosqvist, K., 2010. Distribution and role of macrophytes in coastal lagoons: Implications of critical shifts. Doctoral Thesis, University of Åbo, Finland.

  • Rosqvist, K., J. Mattila, A. Sandström, M. Snickars & M. Westerbom, 2010. Regime shifts in vegetation composition of Baltic Sea coastal lagoons. Aquatic Botany 93: 39–46.

    Article  Google Scholar 

  • Scheffer, M. & E. H. van Nes, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455–466.

    Article  CAS  Google Scholar 

  • Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.

    Article  CAS  Google Scholar 

  • Schiewer, U., 1998. 30 years eutrophication in shallow brackish waters - lessons to be learned. Hydrobiologia 363: 73–79.

    Article  Google Scholar 

  • Schmelzer, N. & J. Holfort, 2014. Der Eiswinter 2013/14 an den Deutschen Nord-und Ostseeküsten mit einem Überblick über die Eisverhältnisse im Gesamten Ostseeraum. Bundesamt für Seeschiffahrt und Hydrographie, Rostock.

    Google Scholar 

  • Schories, D., U. Selig, K. Jegzentis & H. Schubert, 2005. Klassifizierung der äußeren Küstengewässer an der deutschen Ostseeküste nach der Europäischen Wasserrahmenrichtlinie anhand von Makrophyten – Eine Zwischenbilanz. Rostocker Meeresbiologische Beiträge 14: 135–150.

    Google Scholar 

  • Schubert, H, M. Schubert & J. C. Krause, 2007. Reconstruction of XIXth century submerged vegetation of coastal lagoons of the German Baltic Sea. Jura Ir Aplinka 2006 (1) 14: 17–27.

  • Schlungbaum, G. & H. Baudler, 2001. Die Vielfalt innerer Küstengewässer an der südlichen Ostsee – eine Übersicht von der Flensburger Förde bis zum Kurischen Haff. Teil 1: Entwicklungsgeschichte, Morphologie. Hydrologie und Hydrographie. Rostocker Meeresbiologische Beiträge 8: 5–61.

    Google Scholar 

  • Sederias, J. & B. Colman, 2007. The interaction of light and low temperature on breaking the dormancy of Chara vulgaris oospores. Aquatic Botany 87: 229–234.

    Article  Google Scholar 

  • Selig, U., D. Schories, A. Eggert, M. Schubert, C. Blümel & H. Schubert, 2007. Ecological classification of macroalgae and angiosperm communities of inner coastal waters in the southern Baltic Sea. Ecological Indicators 7: 665–678.

    Article  CAS  Google Scholar 

  • Skurzyński, P. & K. Bociąg, 2009. The effect of environmental conditions on the germination of Chara rudis oospores (Characeae, Chlorophyta). Charophytes 1: 61–67.

    Google Scholar 

  • Soulié-Märsche, I. & A. García, 2015. Gyrogonites and oospores, complementary viewpoints to improve the study of the charophytes (Charales). Aquatic Botany 120: 7–17.

    Article  Google Scholar 

  • Steinhardt, T. & U. Selig, 2007. Spatial distribution patterns and relationship between recent vegetation and diaspore bank of a brackish coastal lagoon on the southern Baltic Sea. Estuarine, Coastal and Shelf Science 74: 205–214.

    Article  Google Scholar 

  • Steinhardt, T. & U. Selig, 2009. Comparison of recent vegetation and diaspore banks along abiotic gradients in brackish coastal lagoons. Aquatic Botany 91: 20–26.

    Article  Google Scholar 

  • Stobbe, A., T. Gregor & A. Röpke, 2014. Long-lived banks of oospores in lake sediments from the Trans-Urals (Russia) indicated by germination in over 300 years old radiocarbondated sediments. Aquatic Botany 119: 84–90.

    Article  Google Scholar 

  • Torn, K., A. Kovtun-Kantea, K. Herküla, G. Martin & H. Mäemets, 2015. Distribution and predictive occurrence model of charophytes inEstonian waters. Aquatic Botany 120: 142–149.

    Article  Google Scholar 

  • Van den Berg, M. S., H. Coops & J. Simons, 2001. Propagule bank buildup of Chara aspera and its significance for colonization of a shallow lake. Hydrobiologia 462: 9–17.

    Article  Google Scholar 

  • Van den Berg, M. S., M. Scheffer, E. H. Van Nes & H. Coops, 1999. Dynamics and stability of Chara sp. and Potamogeton pectinatus in a shallow lake changing in eutrophication level. Hydrobiologia 409: 335–342.

    Article  Google Scholar 

  • Van der Heide, T., E. H. van Nes, G. W. Geerling, A. J. P. Smolders, T. J. Bouma & M. M. van Katwijk, 2007. Positive feedbacks in seagrass ecosystems: implications for success in conservation and restoration. Ecosystems 10: 1311–1322.

    Article  Google Scholar 

  • Vedder, F., 2004. Morphologie und Taxonomie rezenter und subfossiler Characeen-Oosporen aus der Ostsee. Rostocker Meeresbiologische Beiträge 13: 43–54.

    Google Scholar 

  • Venable, D. L., 1992. Size-number trade-offs and the variation of seed size with plant resource status. American Naturalist 140: 287–304.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Milena Kafka, Caroline Lindner and Bozena Nawka for support during the field work, and to the Landesamt für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern, Germany, for the disposal of data from the WRB. The National Park administration (Nationalparkamt Vorpommern) kindly permitted us to sample within the core zone in the Grieben Bay. The investigation was financially supported by the Federal Ministry of Education and Research, Germany (Project BACOSA, 03F0665C). We gratefully acknowledge the valuable comments of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irmgard Blindow.

Additional information

Guest editors: M. Beklioğlu, M. Meerhoff, T. A. Davidson, K. A. Ger, K. E. Havens & B. Moss / Shallow Lakes in a Fast Changing World

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blindow, I., Dahlke, S., Dewart, A. et al. Long-term and interannual changes of submerged macrophytes and their associated diaspore reservoir in a shallow southern Baltic Sea bay: influence of eutrophication and climate. Hydrobiologia 778, 121–136 (2016). https://doi.org/10.1007/s10750-016-2655-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2655-4

Keywords

Navigation