Skip to main content
Log in

Prescribed burn creates pulsed effects on a wetland aquatic community

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Fire in uplands and wetlands results in a release of nutrients and increased light in the burned area. However, fire effects on aquatic community dynamics are not well understood. We hypothesized that the addition of light and nutrients resulting from prescribed burns in wetlands increases periphyton biomass and supports increased standing stock of marsh fishes. In the oligotrophic Everglades of Florida, USA, we conducted a 2 × 2 factorial experiment using prescribed burns over standing water (increased nutrients and light), mowing with removal of above-water vegetation (no nutrient increase), and shade houses (no light) to test the prediction that fire effects would lead to more periphyton biomass and greater abundance and size of fish compared to other treatments. We observed increased periphyton percent cover and biomass per area in response to fire treatments. Fish abundance showed a short-term increase in burned plots. Fish length, mass, and condition factor did not respond consistently to treatments, though some species responded to specific treatments. Wildfires in dry marshes that may combust organic soils and vegetation may impact wetlands more than prescribed burns in flooded marshes. Our study suggests that wetland fires can affect aquatic animal and plant community structure, at least for short periods post-fire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Anonymous, 1988. Guidelines for use of fishes in field research. Fisheries 13: 16–23.

    Google Scholar 

  • Beganyi, S. R. & D. P. Batzer, 2011. Wildfire induced changes in aquatic invertebrate communities and mercury bioaccumulation in the Okefenokee Swamp. Hydrobiologia 669: 237–247.

    Article  CAS  Google Scholar 

  • Blaustein, L., 1989. Effects of various factors on the efficiency of minnow traps to sample mosquitofish (Gambusia affinis) and green sunfish (Lepomis cyanellus) populations. Journal of the American Mosquito Control Association 5: 29–35.

    CAS  PubMed  Google Scholar 

  • Browder, J. A., 1981. Perspective on the ecological causes and effects of algal composition of Southern Everglades Periphyton. South Florida Research Station, Report T-643, Homestead, FL.

  • Chick, J. H., P. Geddes & J. C. Trexler, 2008. Periphyton mat structure mediates trophic interactions in a subtropical marsh. Wetlands 28: 378–389.

    Article  Google Scholar 

  • De Szalay, F. A. & V. H. Resh, 1997. Responses of wetland invertebrates and plants important in waterfowl diets to burning and mowing of emergent vegetation. Wetlands 17: 149–156.

    Article  Google Scholar 

  • DeAngelis, D. L., J. C. Trexler, C. Cosner, A. Obaza & F. Jopp, 2010. Fish population dynamics in a seasonally varying wetland. Ecological Modelling 221: 1131–1137.

    Article  Google Scholar 

  • Dorn, N. J., J. C. Trexler & E. E. Gaiser, 2006. Exploring the role of large predators in marsh food webs: evidence for a behaviorally-mediated trophic cascade. Hydrobiologia 569: 375–386.

    Article  Google Scholar 

  • Ewe, S. M. L., E. E. Gaiser, D. L. Childers, D. Iwaniec, V. H. Rivera-Monroy & R. R. Twilley, 2006. Spatial and temporal patterns of aboveground net primary productivity (ANPP) along two freshwater-estuarine transects in the Florida Coastal Everglades. Hydrobiologia 569: 459–474.

    Article  Google Scholar 

  • Gaiser, E. E., J. C. Trexler, J. H. Richards, D. L. Childers, D. Lee, A. L. Edwards, L. J. Scinto, K. Jayachandran, G. B. Noe & R. D. Jones, 2005. Cascading ecological effects of low-level phosphorus enrichment in the Florida Everglades. Journal of Environmental Quality 34: 717–723.

    Article  CAS  PubMed  Google Scholar 

  • Gaiser, E. E., P. V. McCormick, S. E. Hagerthey & A. D. Gottlieb, 2011. Landscape patterns of periphyton in the Florida Everglades. Critical Reviews in Environmental Science and Technology 41: 92–120.

    Article  Google Scholar 

  • Gaiser, E. E., J. C. Trexler & P. Wetzel, 2012. The Florida Everglades. In Batzer, D. & A. Baldwin (eds), Wetland Habitats of North America Ecology and Conservation Concerns. University of California Press, Berkeley, CA: 231–252.

    Google Scholar 

  • Gawlik, D. E., 2002. The effects of prey availability on the numerical response of wading birds. Ecological Monographs 72: 329–346.

    Article  Google Scholar 

  • Geddes, P. & J. C. Trexler, 2003. Uncoupling of omnivore-mediated positive and negative effects on periphyton mats. Oecologia 136: 585–595.

    Article  PubMed  Google Scholar 

  • Gresswell, R. E., 1999. Fire and aquatic ecosystems in forested biomes of North America. Transactions of the American Fisheries Society 128: 193–221.

    Article  Google Scholar 

  • Grimshaw, H., R. Wetzel, M. Brandenburg, K. Segerblom, L. Wenkert, G. Marsh, W. Charnetzky, J. Haky & C. Carraher, 1997. Shading of periphyton communities by wetland emergent macrophytes: decoupling of algal photosynthesis from microbial nutrient retention. Archiv für Hydrobiologie 139: 17–27.

    CAS  Google Scholar 

  • Gunderson, L. H., 1994. Vegetation of the Everglades. Determinants of community composition. In Davis, S. M. & J. C. Ogden (eds), Everglades the Ecosystem and its Restoration. St. Lucie Press, Delray Beach, FL: 323–340.

    Google Scholar 

  • Gunderson, L. H. & J. R. Snyder, 1994. Fire patterns in the Southern Everglades. In Davis, S. M. & J. C. Ogden (eds), Everglades the Ecosystem and its Restoration. St. Lucie Press, Delray Beach, FL: 291–305.

    Google Scholar 

  • Hagerthey, S. E., M. I. Cook, R. Mac Kobza, S. Newman & B. J. Bellinger, 2014. Aquatic faunal responses to an induced regime shift in the phosphorus-impacted Everglades. Freshwater Biology 59: 1389–1405.

    Article  CAS  Google Scholar 

  • Harvey, J. W., R. W. Schaffranek, G. B. Noe, L. G. Larsen, D. J. Nowacki & B. L. O’Connor, 2009. Hydroecological factors governing surface water flow on a low-gradient floodplain. Water Resources Research 45: 1–20.

    Article  Google Scholar 

  • He, X. & D. M. Lodge, 1990. Using minnow traps to estimate fish population size: the importance of spatial distribution and relative species abundance. Hydrobiologia 190: 9–14.

    Article  Google Scholar 

  • Hillebrand, H., 2005. Light regime and consumer control of autotrophic biomass. Journal of Ecology 93: 758–769.

    Article  Google Scholar 

  • Hoch, J. M., E. R. Sokol, A. D. Parker & J. C. Trexler, 2015. Migration Strategies Vary in Space, Time, and Among Species in the Small-fish Metacommunity of the Everglades. Copeia 2015: 157–169.

    Article  Google Scholar 

  • Hochkirch, A. & F. Adorf, 2007. Effects of prescribed burning and wildfires on Orthoptera in Central European peat bogs. Environmental Conservation 34: 225–235.

    Article  Google Scholar 

  • Jordan, F., S. Coyne & J. C. Trexler, 1997. Sampling Fishes in Vegetated Habitats: Effects of Habitat Structure on Sampling Characteristics of the 1-m2 Throw Trap. Transactions of the American Fisheries Society 126: 1012–1020.

    Article  Google Scholar 

  • Klassen, J. A., D. E. Gawlik, & B. A. Botson, 2014. Length-weight and length-length relationships for common fish and crayfish species in the everglades, florida, USA. Journal of Applied Ichthyology 30: 564–566.

    Article  Google Scholar 

  • Kushlan, J. A., S. A. Voorhees, W. F. Loftus & P. C. Frohring, 1986. Length, mass, and calorific relationships of Everglades animals. Florida Scientist 49: 65–79.

    Google Scholar 

  • Layman, C. A. & D. E. Smith, 2001. Sampling bias of minnow traps in shallow aquatic habitats on the Eastern Shore of Virginia. Wetlands 21: 145–154.

    Article  Google Scholar 

  • Leips, J. & J. Travis, 1999. The comparative expression of life-history traits and its relationship to the numerical dynamics of four populations of the least killifish. Journal of Animal Ecology 68: 595–616.

    Article  Google Scholar 

  • Liu, G. D., B. Gu, S. L. Miao, Y. C. Li, K. W. Migliaccio, & Y. Qian, 2010. Phosphorus release from ash and remaining tissues of two wetland species after a prescribed fire. Journal of Environmental Quality 39: 1585–1593.

    Article  CAS  PubMed  Google Scholar 

  • Loftus, W. F. & A.-M. Eklund, 1994. Long-term dynamics of an Everglades small-fish assemblage. In Davis, S. M. & J. C. Ogden (eds), Everglades: the Ecosystem and its Restoration. Lucie Press, Delray Beach FL, St: 461–483.

    Google Scholar 

  • Lugo, A. E., 1995. Fire and Wetland Management. In Cerulean, S. I., & R. T. Engstrom (eds), Fire in wetlands: a management perspective. Proceedings of the Tall Timbers Fire Ecology Conference, No. 19. Tallahassee, FL: 1–9.

  • McCormick, P. V. & L. J. Scinto, 1999. Influence of phosphorus loading on wetlands periphyton assemblages: a case study from the Everglades. In Reddy, K. R., G. A. O’Connor & C. L. Schelske (eds), Phosphorus Biogeochemistry in Subtropical Ecosystems. Lewis Publishers, Boca Raton, FL: 301–319.

    Google Scholar 

  • McCormick, P. V. & M. B. O’Dell, 1996. Quantifying periphyton responses to phosphorus in the Florida Everglades: a synoptic-experimental approach. Journal of the North American Benthological 15: 450–468.

    Article  Google Scholar 

  • McCormick, P. V., R. B. E. Shuford III, J. G. Backus & W. C. Kennedy, 1998. Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, Florida, USA. Hydrobiologia 362: 185–208.

    Article  Google Scholar 

  • McVoy, C. W., W. P. Said, J. Obeysekera, J. A. Van Arman & T. W. Dreschel, 2011. Landscapes and Hydrology of the Predrainage Everglades. University Press of Florida, Gainesville, FL.

    Google Scholar 

  • Miao, S. L. & F. H. Sklar, 1998. Biomass and nutrient allocation of sawgrass and cattail along a nutrient gradient in the Florida Everglades. Wetlands Ecology and Management 5: 245–263.

    Article  Google Scholar 

  • Miao, S. L., C. Edelstein, S. Carstenn & B. Gu, 2010. Immediate ecological impacts of a prescribed fire on a cattail-dominated wetland in Florida Everglades. Fundamental and Applied Limnology, Archiv für Hydrobiologie 176: 29–41.

    Article  CAS  Google Scholar 

  • Mokany, A., J. T. Wood & S. A. Cunningham, 2008. Effect of shade and shading history on species abundances and ecosystem processes in temporary ponds. Freshwater Biology 53: 1917–1928.

    Article  Google Scholar 

  • Mosisch, T. D., S. E. Bunn & P. M. Davies, 2001. The relative importance of shading and nutrients on algal production in subtropical streams. Freshwater Biology 46: 1269–1278.

    Article  Google Scholar 

  • Munro, N. T., K.-J. Kovac, D. Niejalke & R. B. Cunningham, 2009. The effect of a single burn event on the aquatic invertebrates in artesian springs. Austral Ecology 34: 837–847.

    Article  Google Scholar 

  • Newman, S., P. V. McCormick, S. L. Miao, J. A. Laing, W. C. Kennedy & M. B. O’Dell, 2004. The effect of phosphorus enrichment on the nutrient status of a northern Everglades slough. Wetlands Ecology and Management 12: 63–79.

    Article  CAS  Google Scholar 

  • Noe, G. B., D. L. Childers & R. D. Jones, 2001. Phosphorus biogeochemistry and the impact of phosphorus enrichment: why is the Everglades so unique? Ecosystems 4: 603–624.

    Article  CAS  Google Scholar 

  • Obaza, A., D. L. DeAngelis & J. C. Trexler, 2011. Using data from an encounter sampler to model fish dispersal. Journal of Fish Biology 78: 495–513.

    Article  CAS  PubMed  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, & H. Wagner, 2015. Package “vegan.”, http://cran.r-project.org/web/packages/vegan/vegan.pdf.

  • Qian, Y., S. L. Miao, B. Gu & Y. C. Li, 2009. Effects of burn temperature on ash nutrient forms and availability from cattail (Typha domingensis) and sawgrass (Cladium jamaicense) in the Florida Everglades. Journal of Environmental Quality 38: 451–464.

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team, 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.r-project.org.

  • Rader, R. B. & C. J. Richardson, 1992. The effects of nutrient enrichment on algae and macroinvertebrates in the Everglades: a review. Wetlands 12: 121–135.

    Article  Google Scholar 

  • Reimer, R. D., 1970. A food study of Heterandria formosa Agassiz. American Midland Naturalist 83: 311–315.

    Article  Google Scholar 

  • Saiers, J. E., J. W. Harvey & S. E. Mylon, 2003. Surface-water transport of suspended matter through wetland vegetation of the Florida Everglades. Geophysical Research Letters 30: 1–5.

    Google Scholar 

  • Sargeant, B. L., E. E. Gaiser & J. C. Trexler, 2011. Indirect and direct controls of macroinvertebrates and small fish by abiotic factors and trophic interactions in the Florida Everglades. Freshwater Biology 56: 2334–2346.

    Article  Google Scholar 

  • Sartory, D. P. & J. U. Grobbelaar, 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114: 177–187.

    Article  CAS  Google Scholar 

  • Slocum, M. G., W. J. Platt, B. Beckage, B. Panko & J. B. Lushine, 2007. Decoupling natural and anthropogenic fire regimes: a case study in Everglades National Park, Florida. Natural Areas Journal 27: 41–55.

    Article  Google Scholar 

  • Smith, S. M. & S. Newman, 2001. Growth of southern cattail (Typha domingensis Pers.) seedlings in response to fire-related soil transformations in the northern Florida Everglades. Wetlands 21: 363–369.

    Article  Google Scholar 

  • Smith, L. M., J. A. Kadlec & P. V. Fonnesbeck, 1984. Effects of prescribed burning on nutritive quality of marsh plants in Utah. Journal of Wildlife Management 48: 285–288.

    Article  Google Scholar 

  • Smith, S. M., S. Newman, P. B. Garrett & J. A. Leeds, 2001. Differential Effects of Surface and Peat Fire on Soil Constituents in a Degraded Wetland of the Northern Florida Everglades. Journal of Environmental Quality 30: 1998–2005.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, S., E. E. Gaiser & F. A. Tobias, 2006. Effects of shading on calcareous benthic periphyton in a short-hydroperiod oligotrophic wetland (Everglades, FL, USA). Hydrobiologia 569: 209–221.

    Article  Google Scholar 

  • Travis, J., J. A. Farr, M. McManus & J. C. Trexler, 1989. Environmental effects on adult growth patterns in the male sailfin molly, Poecilia latipinna (Poeciliidae). Environmental Biology of Fishes 26: 119–127.

    Article  Google Scholar 

  • Venne, L. S. & P. C. Frederick, 2013. Foraging wading bird (Ciconiiformes) attraction to prescribed burns in an oligotrophic wetland. Fire Ecology 9: 78–95.

    Article  Google Scholar 

  • Wade, D., J. Ewel, & R. Hofstetter, 1980. Fire in south Florida ecosystems. US Department of Agriculture, Forest Service General Technical Report SE-17, Southeastern Forest Experiment Station, Asheville, NC.

  • Whelan, R. J., 1995. The Ecology of Fire. Cambridge University Press, Department of Biological Sciences, University of Wollongong, Australia

Download references

Acknowledgments

Funding for this project was provided by the US Army Corps of Engineers through grants W912HZ-12-2-0010 and W912HZ-10-2-0013 to PCF. LSV was supported in part under National Science Foundation IGERT Grant 0504422 and the US Army Corps of Engineers grants to PCF. JCT was supported by the Florida Coastal Everglades Long-Term Ecological Research program under National Science Foundation Grants DBI-0620409 and DEB-1237517 during this study. We thank the following people for help in the field, statistical guidance, and edits: B. Burtner, B. Faustini, J. Fidorra, T. Glover, M. Johnston, W. Loftus, E. Posthumus, M. Schlothan, J.C. Simon, G. Smith, C. Stiegler, and A. Williams. We thank M. Ward and M. Juntunen with Florida Fish and Wildlife Conservation Commission for cooperation during burns and providing extensive burn information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise S. Venne.

Additional information

Handling editor: Stuart Anthony Halse

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venne, L.S., Trexler, J.C. & Frederick, P.C. Prescribed burn creates pulsed effects on a wetland aquatic community. Hydrobiologia 771, 281–295 (2016). https://doi.org/10.1007/s10750-016-2640-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2640-y

Keywords

Navigation