Skip to main content

Advertisement

Log in

Site-scale isotopic variations along a river course help localize drainage basin influence on river food webs

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In human-impacted rivers, nutrient pollution has the potential to disrupt biodiversity organisation and ecosystem functioning, prompting calls for effective monitoring and management. Pollutants, together with natural variations, can modify the isotopic signature of aquatic organisms. Accordingly, we explored the potential of isotopic variations as an indicator of drainage basin influences on river food webs. We assessed stable N and C isotopes within six food webs along a river affected by multiple pollution sources. CORINE land cover maps and Digital Elevation Models (DEMs) were also applied to understand the impact on surface waters of anthropogenic pressures affecting the catchment. N isotopic signatures of taxa fell in association with ammonium inputs from agriculture, indicating that nitrogen pollution was related to synthetic fertilizers. Isotopic variations were consistent across trophic levels, highlighting site-specific communities and identifying taxa exposed to pollutants. This allowed us to locate point sources of disturbance, suggesting that food web structure plays a key role in pollutant compartmentalisation along the river. Thematic maps and DEMs helped understand how the anthropogenic impact on river biota is mediated by hydro-geomorphology. Thus, the integration of site-scale analyses of stable isotopes and land use represents a promising research pathway for explorative nutrient pollution monitoring in human-impacted rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrantes, K. G., A. Barnett & S. Bouillon, 2014. Stable isotope-based community metrics as a tool to identify patterns in food web structure in east African estuaries. Functional Ecology 28: 270–282.

    Article  Google Scholar 

  • Amon, R. M. W. & R. Benner, 1996. Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geochimica and Cosmochimica Acta 60: 1783–1792.

    Article  CAS  Google Scholar 

  • Anderson, C. & G. Cabana, 2005. δ15N in riverine food webs: effects of N inputs from agricultural watersheds. Canadian Journal of Fisheries and Aquatic Sciences 62: 333–340.

    Article  CAS  Google Scholar 

  • Anderson, C. & G. Cabana, 2006. Does δ15N in river food webs reflect the intensity and origin of N loads from the watersheds? Science of the Total Environment 367: 968–978.

    Article  CAS  PubMed  Google Scholar 

  • APHA, 1985. Standard Methods for the Examination of Water and Wastewater, 16th ed. American Public Health Association, Northwest, Washington, DC.

    Google Scholar 

  • Araújo, F. G., 1998. Adaptação do índice de integridade biótica usando a comunidade de peixes para o rio Paraíba do Sul. Revista Brasileira de Biologia 58: 547–558.

    Article  Google Scholar 

  • Box, G. E. P. & D. R. Cox, 1964. An analysis of transformations. Journal of the Royal Statistical Society Series B 26: 211–252.

    Google Scholar 

  • Bunn, S. E., P. M. Davies & T. D. Mosisch, 1999. Ecosystem measures of river health and their response to riparian and catchment degradation. Freshwater Biology 41: 333–345.

    Article  Google Scholar 

  • Calizza, E., M. L. Costantini, D. Rossi, P. Carlino & L. Rossi, 2012. Effects of disturbance on an urban river food web. Freshwater Biology 57: 2613–2628.

    Article  Google Scholar 

  • Calizza, E., L. Rossi & M. L. Costantini, 2013a. Predators and resources influence phosphorus transfer along an invertebrate food web through changes in prey behaviour. PLoS ONE 8: e65186. doi:10.1371/journal.pone.0065186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calizza, E., M. L. Costantini, P. Carlino, F. Bentivoglio, L. Orlandi & L. Rossi, 2013b. Posidonia oceanica habitat loss and changes in litter-associated biodiversity organization: a stable isotope-based preliminary study. Estuarine Coastal and Shelf Science 135: 137–145.

    Article  CAS  Google Scholar 

  • Calizza, E., M. L. Costantini & L. Rossi, 2015a. Effect of multiple disturbances on food web vulnerability to biodiversity loss in detritus-based systems. Ecosphere 6: 124. doi:10.1890/ES14-00489.1.

    Article  Google Scholar 

  • Calizza, E., Y. Aktan, M. L. Costantini & L. Rossi, 2015b. Stable isotope variations in benthic primary producers along the Bosphorus (Turkey): a preliminary study. Marine Pollution Bulletin 97: 535–538.

    Article  CAS  PubMed  Google Scholar 

  • Careddu, G., M. L. Costantini, E. Calizza, P. Carlino, F. Bentivoglio, L. Orlandi & L. Rossi, 2015. Effects of terrestrial input on macrobenthic food webs of coastal sea are detected by stable isotope analysis in Gaeta Gulf. Estuarine Coastal and Shelf Science 154: 158–168.

    Article  CAS  Google Scholar 

  • Clements, D. H., D. M. Carlisle, J. M. Lazorchak & P. C. Johnson, 2000. Heavy metals structure benthic communities in Colorado mountain streams. Ecological Applications 10: 626–638.

    Article  Google Scholar 

  • Cohen, R. A. & P. Fong, 2005. Experimental evidence supports the use of δ15N content of the opportunistic green macroalga Enteromorpha intestinalis (Chlorophyta) to determine nitrogen sources to estuaries. Journal of Phycology 41: 287–293.

    Article  CAS  Google Scholar 

  • Coll, M., H. K. Lotze & T. N. Romanuk, 2008. Structural degradation in mediterranean sea food webs: testing ecological hypotheses using stochastic and mass-balance modelling. Ecosystems 11: 939–960.

    Article  Google Scholar 

  • Conover, W. J., M. E. Johnson & M. M. Johnson, 1981. A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics 23: 351–361.

    Article  Google Scholar 

  • Costantini, M. L. & L. Rossi, 1995. Role of fungal patchiness on vegetal detritus in the trophic interactions between two brackish detritivores, Idotea baltica and Gammarus insensibilis. Hydrobiologia 316: 117–126.

    Article  Google Scholar 

  • Costantini, M. L. & L. Rossi, 1998. Competition between two aquatic detritivorous isopods – a laboratory study. Hydrobiologia 368: 17–27.

    Article  Google Scholar 

  • Costantini, M. L., L. Rossi, S. Fazi & D. Rossi, 2009. Detritus accumulation and decomposition in a coastal lake (Acquatina – southern Italy). Aquatic Conservation: Marine and Freshwater Ecosystems 19: 566–574.

    Article  Google Scholar 

  • Costas, N. & I. Pardo, 2015. Isotopic variability in a stream longitudinal gradient: implications for trophic ecology. Aquatic Sciences 77: 231–260.

    Article  CAS  Google Scholar 

  • Cunico, A. M., J. D. Allan & A. A. Agostinho, 2011. Functional convergence of fish assemblages in urban streams of Brazil and the United States. Ecological Indicators 11: 1354–1359.

    Article  Google Scholar 

  • Dailer, M. L., R. S. Knox, J. E. Smith, M. Naiper & C. M. Smith, 2010. Using δ15N values in algal tissue to map locations and potential sources of anthropogenic nutrient inputs on the island of Maui, Hawai‘i, USA. Marine Pollution Bulletin 60: 655–671.

    Article  CAS  PubMed  Google Scholar 

  • Darnaude, A. M., C. Salen-Picard, N. V. C. Polunin & M. L. Harmelin-Vivien, 2004. Trophodynamic linkage between river runoff and coastal fishery yield elucidated by stable isotope data in the Gulf of Lions (NW Mediterranean). Oecologia 138: 325–332.

    Article  PubMed  Google Scholar 

  • deBruyn, A. M. H. & J. B. Rasmussen, 2002. Quantifying assimilation of sewage-derived organic matter by riverine benthos. Ecological Applications 12: 511–520.

    Article  Google Scholar 

  • di Lascio, A., L. Rossi, P. Carlino, E. Calizza, D. Rossi & M. L. Costantini, 2013. Stable isotope variation in macroinvertebrates indicates anthropogenic disturbance along an urban stretch of the river Tiber (Rome, Italy). Ecological Indicators 28: 107–114.

    Article  Google Scholar 

  • Diaz-Pacheco, J. & J. Gutiérrez, 2014. Exploring the limitations of CORINE Land Cover for monitoring urban land-use dynamics in metropolitan areas. Journal of Land Use Science 9: 243–259. doi:10.1080/1747423X.2012.761736.

    Article  Google Scholar 

  • Durbin, J. & G. S. Watson, 1951. Testing for Serial Correlation in Least Squares Regression, I. Biometrika 37: 409–428.

    Google Scholar 

  • Fazi, S. & L. Rossi, 2000. Effects of macrodetritivores density on leaf detritus processing rate: a macrocosm experiment. Hydrobiologia 435: 127–134.

    Article  Google Scholar 

  • Fisher, H. & M. Push, 2001. Comparison of bacterial production in sediments, epiphyton and the pelagic zone of a lowland river. Freshwater Biology 46: 1335–1348.

    Article  Google Scholar 

  • Hildrew, A. G., 2009. Sustained research on stream communities: a model system and the comparative approach. In Caswell, H. (ed.), Advances in Ecological Research, Vol. 41. Academic Press, Burlington: 175–312.

    Google Scholar 

  • Horwath, R. S., 1972. Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriological Reviews 36: 146–155.

    Google Scholar 

  • Jackson, A. L., R. Inger, A. C. Parnell & S. Bearhop, 2011. Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology 80: 595–602.

    Article  PubMed  Google Scholar 

  • Jona-Lasinio, G., M. L. Costantini, E. Calizza, A. Pollice, F. Bentivoglio, L. Orlandi, G. Careddu & L. Rossi, 2015. Stable isotope-based statistical tools as ecological indicator of pollution sources in Mediterranean transitional water ecosystems. Ecological Indicators 55: 23–31.

    Article  CAS  Google Scholar 

  • Kaartinen, R. & T. Roslin, 2012. High temporal consistency in quantitative food web structure in the face of extreme species turnover. Oikos 121: 1771–1782.

    Article  Google Scholar 

  • Karr, J. R., 1981. Assessment of biotic integrity using fish communities. Fisheries 6: 21–27.

    Article  Google Scholar 

  • Macko, S. A. & N. E. Ostrom, 1994. Molecular and pollution studies using stable isotopes. In Michener, R. & K. Lajtha (eds), Stable Isotopes in Ecology and Environmental Science. Blackwell, Oxford: 45–62.

    Google Scholar 

  • May, R. M., 2009. Food-web assembly and collapse: mathematical models and implications for conservation. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 364: 1643–1646.

    Article  PubMed Central  Google Scholar 

  • McCutchan, J. H., W. M. Lewis, C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390.

    Article  CAS  Google Scholar 

  • Moore, I. D., R. B. Grayson & A. R. Ladson, 1991. Digital terrain modeling: a review of hydrological, geomorphological and biological applications. Hydrological Processes 5(1): 3–30.

    Article  Google Scholar 

  • Moore, I. D., A. Lewis & J. C. Gallant, 1993. Terrain properties: estimation methods and scale effects. In Jakeman, A. J., et al. (eds), Modeling Change in Environmental Systems. Wiley, New York.

    Google Scholar 

  • Morrissey, C. A., A. Boldt, A. Mapstone, J. Newton & S. J. Ormerod, 2013. Stable isotopes as indicators of wastewater effects on the macroinvertebrates of urban rivers. Hydrobiologia 700: 231–244.

    Article  CAS  Google Scholar 

  • O’Gorman, E. J., J. E. Fitch & T. P. Crowe, 2012. Multiple anthropogenic stressors and the structural properties of food webs. Ecology 93: 441–448.

    Article  PubMed  Google Scholar 

  • Orlandi, L., F. Bentivoglio, P. Carlino, E. Calizza, D. Rossi, M. L. Costantini & L. Rossi, 2014. δ15N variation in Ulva lactuca as a proxy for anthropogenic nitrogen inputs in coastal areas of Gulf of Gaeta (Mediterranean Sea). Marine Pollution Bulletin 84: 76–82.

    Article  CAS  PubMed  Google Scholar 

  • Parnell, A., R. Inger, S. Bearhop & A. L. Jackson, 2008. SIAR: stable isotope analysis in R. The Comprehensive R Archive Network. Available at http://cran.r-project.org/web/packages/siar/index.html.

  • Parnell, A. C., R. Inger, S. Bearhop & A. L. Jackson, 2010. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5: e9672.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson, B. J., 1999. Stable isotopes as tracers of organic matter input and transfer in benthic food webs: a review. Acta Oecologica 20(4): 479–487.

    Article  Google Scholar 

  • Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320.

    Article  Google Scholar 

  • Polis, G., 1991. Complex trophic interactions in deserts: an empirical critique of food-web theory. American Naturalist 138: 123–155.

    Article  Google Scholar 

  • Poole, G. C., 2002. Fluvial landscape ecology: addressing uniqueness within the river discontinuum. Freshwater Biology 47: 641–660.

    Article  Google Scholar 

  • Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.

    Article  Google Scholar 

  • Power, M. E. & W. E. Dietrich, 2002. Food webs in river networks. Ecological Research 17: 451–471.

    Article  Google Scholar 

  • Preziosi, D. V. & R. A. Pastorok, 2008. Ecological food web analysis for chemical risk assessment. Science of the Total Environment 406: 491–502.

    Article  CAS  PubMed  Google Scholar 

  • Pyke, G. H., H. R. Pulliam & E. L. Charnov, 1977. Optimal foraging: a selective review of theory and tests. Quarterly Review of Biology 52: 137–154.

    Article  Google Scholar 

  • Rasmussen, J. B., V. Trudeau & G. Morinville, 2009. Estimating the scale of fish feeding movements in rivers using δ13C signature gradients. Journal of Animal Ecology 78: 674–685.

    Article  PubMed  Google Scholar 

  • Raymond, A. P., N.-H. Oh, R. E. Turner & W. Broussard, 2007. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451: 449–452.

    Article  Google Scholar 

  • Rossi, L., M. L. Costantini & M. Brilli, 2007. Does stable isotope analysis separate transgenic and traditional corn (Zea mays L.) detritus and their consumers? Applied Soil Ecology 35: 449–453.

    Article  Google Scholar 

  • Rossi, L., M. L. Costantini, P. Carlino, A. di Lascio & D. Rossi, 2010. Autochthonous and allochthonous plant contributions to coastal benthic detritus deposits: a dual-stable isotope study in a volcanic lake. Aquatic Sciences 72: 227–236.

    Article  CAS  Google Scholar 

  • Rossi, L., A. di Lascio, P. Carlino, E. Calizza & M. L. Costantini, 2015. Predator and detritivore niche width helps to explain biocomplexity of experimental detritus-based food webs in four aquatic and terrestrial ecosystems. Ecological Complexity 23: 14–24.

    Article  Google Scholar 

  • Silva, S. R., P. B. Ging, R. W. Lee, J. C. Ebbert, A. J. Tesoriero & E. L. Inkpen, 2002. Forensic application of nitrogen and oxygen isotopes in tracing nitrate sources in urban environments. Environmental Forensics 3: 125–130.

    Article  CAS  Google Scholar 

  • Simon, K. S., D. K. Niyogi, R. D. Frew & C. R. Townsend, 2007. Nitrogen dynamics in grassland streams along a gradient of agricultural development. Limnology and Oceanography 52: 1246–1257.

    Article  CAS  Google Scholar 

  • Solan, M., B. J. Cardinale, A. L. Downing, K. A. M. Engelhardt, J. L. Ruesink & D. S. Srivastava, 2004. Extinction and ecosystem function in the marine benthos. Science 306: 1177–1180.

    Article  CAS  PubMed  Google Scholar 

  • Sprent, J. I., 1987. The Ecology of the Nitrogen Cycle. Cambridge University Press, Cambridge.

    Google Scholar 

  • Surber, E. W., 1937. Rainbow trout and bottom fauna production in one mile of stream. Transactions of the American Fisheries Society 66: 193–202.

    Article  Google Scholar 

  • Thompson, R. M. & C. R. Townsend, 2004. Land-use influences on New Zealand stream communities: effects on species composition, functional organisation, and food-web structure. New Zealand Journal of Freshwater Sciences 38: 595–680.

    Article  Google Scholar 

  • Udy, J. W., C. S. Fellows, M. E. Bartkow, S. E. Bunn, J. E. Clapcott & B. D. Harch, 2006. Measures of nutrient processes as indicators of stream ecosystem health. Hydrobiologia 572: 89–102.

    Article  CAS  Google Scholar 

  • Vander Zanden, M. J., Y. Vadeboncoeur, M. W. Diebel & E. Jeppesen, 2005. Primary consumer stable nitrogen isotopes as indicators of nutrient source. Environmental Science and Technology 39: 7509–7515.

    Article  CAS  PubMed  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Vaze, J., J. Teng & G. Spencer, 2010. Impact of DEM accuracy and resolution on topographic indices. Environmental Modelling & Software 25: 1086–1098.

    Article  Google Scholar 

  • Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan, C. Reidy Liermann & P. M. Davies, 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561.

    Article  PubMed  Google Scholar 

  • Weibel, R. & M. Heller, 1991. Digital terrain modelling. In Maguire, D. J., M. F. Goodchild & D. W. Rhind (eds), Geographical Information Systems, Vol. 1. Longman, Harlow: 269–297.

    Google Scholar 

  • Wilson, J. P. & J. C. Gallant, 2000. Digital terrain analysis. In Wilson, J. P. & J. C. Gallant (eds), Terrain Analysis: Principles and Applications. Wiley, New York: 1–27.

    Google Scholar 

  • Winemiller, K. O., D. J. Hoeinghaus, A. A. Pease, P. C. Esselman, R. L. Honeycutt, D. Gbanaador, E. Carrera & J. Payne, 2011. Stable isotope analysis reveals food web structure and watershed impacts along the fluvial gradient of a mesoamerican coastal river. River Research and Applications 27: 791–803.

    Article  Google Scholar 

  • Wise, S. M., 2007. Effect of differing DEM creation methods on the results from a hydrological model. Computers & Geosciences 33: 1351–1365.

    Article  Google Scholar 

  • Woodward, G. & A. G. Hildrew, 2002. Food web structure in riverine landscape. Freshwater Biology 47: 777–789.

    Article  Google Scholar 

  • Zeug, S. C., D. Peretti & K. O. Winemiller, 2009. Movement into floodplain habitats by gizzard shad (Dorosoma cepedianum) revealed by dietary and stable isotope analyses. Environmental Biology of Fishes 84: 307–314.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mr. G. Metcalf for revising the English text, Prof. G. Jona-Lasinio for support in the statistical analysis, and two anonymous Reviewers, whose comments helped to substantially improve the manuscript. This research was supported by grants from MIPAF, PRNA (2010), Sapienza University (2012) and Latina Provincial Administration (2012). We also thank Vetro Scientifica s.r.l. (www.vetroscientifica.com, Rome, Italy) for providing high-quality laboratory materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loreto Rossi.

Additional information

Handling editor: Pierluigi Viaroli

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 306 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bentivoglio, F., Calizza, E., Rossi, D. et al. Site-scale isotopic variations along a river course help localize drainage basin influence on river food webs. Hydrobiologia 770, 257–272 (2016). https://doi.org/10.1007/s10750-015-2597-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2597-2

Keywords

Navigation