Skip to main content

Advertisement

Log in

The structuring role of free-floating plants on the fish community in a tropical shallow lake: an experimental approach with natural and artificial plants

  • SHALLOW LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Free-floating plants are important components of aquatic ecosystems in tropical climates, playing a key role in the structure and spatial distribution of fish communities. This study aims at elucidating the potential effects of free-floating vegetation on fish community structure in a tropical floodplain lake, using an experimental approach based on natural and artificial devices (Eichhornia crassipes), in high and low (LT) turbidity waters. A total of 32 fish species were found, richness, abundance, biomass, mean fresh body weight, and standard length were all significantly higher in the LT regions. Although no significant differences of community traits were found between artificial and natural substrates, regardless of water turbidity, fish composition differences between devices were observed in clear waters. Benthivorous fishes were the most widespread trophic group, with higher abundance and biomass in LT, while no differences were found among plant types. The results confirmed the structural role played by free-floating plants in the fish community by offering a refuge to smaller bodied fish species and younger specimens of larger species, independently of turbidity conditions. However, the effect was stronger in clear waters. The evidence also supported the hypothesis that the fish community forages within the plant beds. Turbidity spatial gradients or turbid regimes in tropical shallow lakes, as well as important floating macrophyte coverage could have strong impacts on the fish community structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agostinho, A. A., S. M. Thomaz, L. C. Gomes & S. L. Baltar, 2007. Influence of the macrophyte Eichhornia azurea on fish assemblage of the Upper Paraná River floodplain (Brazil). Aquatic Ecology 41(4): 611–619.

    Article  CAS  Google Scholar 

  • Aksnes, D. & L. Giske, 1993. A theoretical model of aquatic visual feeding. Ecological Modelling 67: 233–250.

  • Bicudo, D. D. C., B. M. Fonseca, L. M. Bini, L. O. Crossetti, C. E. D. M. Bicudo & T. Araújo-Jesus, 2007. Undesirable side-effects of water hyacinth control in a shallow tropical reservoir. Freshwater Biology 52: 1120–1133.

    Article  Google Scholar 

  • Britski, H.A., K.Z.S. Silimon & B.S. Lopes, 2007. Peixes do Pantanal: Manual de Identificação, 2nd edição. EMBRAPA, Brasília: 227pp.

  • Carniatto, N., R. Fugi, G. Cantanhêde, É. A. Gubiani & N. S. Hahn, 2012. Effects of flooding regime and diel cycle on diet of a small sized fish associated to macrophytes. Acta Limnologica Brasiliensia 24(4): 363–372.

    Article  Google Scholar 

  • Carpenter, S. R. & D. M. Lodge, 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26: 341–370.

    Article  Google Scholar 

  • De Robertis, A., C. H. Ryer, A. Veloza & R. D. Brodeur, 2003. Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish. Canadian Journal of Fisheries and Aquatic Sciences 60: 1517–1526.

    Article  Google Scholar 

  • De Tezanos Pinto, P. & I. O’Farrell, 2014. Regime shifts between free-floating plants and phytoplankton: a review. Hydrobiologia 740(1): 13–24.

  • Dibble, E. D. & F. M. Pelicice, 2010. Influence of aquatic plant‐specific habitat on an assemblage of small neotropical floodplain fishes. Ecology of Freshwater Fish 19(3): 381–389.

  • Evangelista, H. B., S. M. Thomaz & C. A. Umetsu, 2014. An analysis of publications on invasive macrophytes in aquatic ecosystems. Aquatic Invasions 94: 521–528.

    Article  Google Scholar 

  • Figueiredo, B. R., R. P. Mormul & E. Benedito, 2015. Structural complexity and turbidity do not interact to influence predation rate and prey selectivity by a small visually feeding fish. Marine and Freshwater Research 66: 170–176.

    Article  Google Scholar 

  • Gelós, M., F. Teixeira-de Mello, G. Goyenola, C. Iglesias, C. Fosalba, F. García-Rodríguez, J. P. Pacheco, S. García & M. Meerhoff, 2010. Seasonal and diel changes in fish activity and potential cascading effects in subtropical shallow lakes with different water transparency. Hydrobiolgia 646: 173–185.

  • Gomes, L., C. Bulla, A. Agostinho, L. Vasconcelos & L. Miranda, 2012. Fish assemblage dynamics in a Neotropical floodplain relative to aquatic macrophytes and the homogenizing effect of a flood pulse. Hydrobiologia 685(1): 97–107.

    Article  Google Scholar 

  • González-Bergonzoni, I., M. Meerhoff, T. A. Davidson, F. Teixeira-de Mello, A. Baattrup-Pedersen & E. Jeppesen, 2012. Meta-analysis shows a consistent and strong latitudinal pattern in fish omnivory across ecosystems. Ecosystems 15(3): 492–503.

    Article  Google Scholar 

  • Hammer, Ǿ., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological Statistic software package for education and data analysis. Paleontologia Electronica 4(1): 1–9.

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342(343): 151–164.

    Article  Google Scholar 

  • Junk, W. J., M. T. F. Piedade, J. Schöngart, M. Cohn-Haft, J. M. Adeney & F. Wittmann, 2011. A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31(4): 623–640.

    Article  Google Scholar 

  • Junk, W., M. Piedade, R. Lourival, F. Wittmann, P. Kandus, L. Lacerda, R. Bozelli, F. Esteves, C. Nunes da Cunha & L. Maltchik, 2014. Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquatic Conservation: Marine and Freshwater Ecosystems 24(1): 5–22.

    Article  Google Scholar 

  • Kottek, M., J. Grieser, C. Beck, B. Rudolf & F. Rubel, 2006. World Map of the Köppen–Geiger climate classification updated. Meteorologische Zeitschrift 15(3): 259–263.

    Article  Google Scholar 

  • Loverde-Oliveira, S. & V. Huszar, 2007. Phytoplankton ecological responses to the flood pulse in a Pantanal lake, Central Brazil. Acta Limnologica Brasiliensia 19(2): 117–130.

    Google Scholar 

  • Meerhoff, M. & N. Mazzeo, 2004. Importancia de las plantas flotantes libres de gran porte en la conservación y rehabilitación de lagos someros de Sudamérica. Ecosistemas: http://www.revistaecosistemas.net/pdfs/7.pdf.

  • Meerhoff, M., N. Mazzeo, B. Moss & L. Rodríguez-Gallego, 2003. The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology 37: 377–391.

    Article  Google Scholar 

  • Meerhoff, M., J. M. Clemente, F. Teixeira-de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007a. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.

    Article  Google Scholar 

  • Meerhoff, M., C. Iglesias, F. Teixeira-de Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007b. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52(6): 1009–1021. doi: 10.1111/j.1365-2427.2007.01748.x

    Article  Google Scholar 

  • Meerhoff, M., F. Teixeira-de Mello, C. Kruk, C. Alonso, I. Gonzalez Bergonzoni, J. P. Pacheco, G. Lacerot, M. Arim, M. Beklioglu & S. B. Balmana, 2012. Environmental warming in shallow lakes: a review of potential changes in community structure as evidenced from space-for-time substitution approaches. Advances in Ecological Research 46: 259–349.

    Article  Google Scholar 

  • Miranda, L., M. Driscoll & M. Allen, 2000. Transient physicochemical microhabitats facilitate fish survival in inhospitable aquatic plant stands. Freshwater Biology 44(4): 617–628.

    Article  Google Scholar 

  • Montiel-Martínez, A., J. Ciros-Pérez & G. Corkidi, 2015. Littoral zooplankton–water hyacinth interactions: habitat or refuge? Hydrobiologia 1–10.

  • Nunes, J. R. & C. J. Da-Silva, 2009. Concentração de íons no sistema de baías chacororé-sinhá mariana, pantanal de mato grosso. UNICIÊNCIAS 13(1).

  • Pacheco, E. & C. Da-Silva, 2009. Fish associated with aquatic macrophytes in the Chacororé-Sinhá Mariana lake system and Mutum River, Pantanal of Mato Grosso, Brazil. Brazilian Journal of Biology 69(1): 101–108.

    Article  CAS  Google Scholar 

  • Padial, A. A., S. M. Thomaz & A. A. Agostinho, 2009. Effects of structural heterogeneity provided by the floating macrophyte Eichhornia azurea on the predation efficiency and habitat use of the small Neotropical fish Moenkhausia sanctaefilomenae. Hydrobiologia 624(1): 161–170.

    Article  Google Scholar 

  • PCBAP (Programa Nacional do Meio Ambiente, Projeto Pantanal), 1997. Plano de conservação da bacia do Alto Paraguai. Diagnóstico dos meios físico e biótico. Brasília: MMA/PNMA. v.2.

  • Pekcan-Hekim, Z. & J. Lappalainen, 2006. Effects of clay turbidity and density of pikeperch (Sander lucioperca) larvae on predation by perch (Perca fluviatilis). Naturwissenschaften 93(7): 356–359.

    Article  CAS  PubMed  Google Scholar 

  • Pinto, A., 1999. El pulso de inundación y la limnología de la laguna Sinha Mariana en el panatanal de Mato-Grosso, Brasil. Congreso boliviano de limnología y recursos naturales. Revista Boliviana de Ecologia y Conservacion Ambiental 6: 19–26.

    Google Scholar 

  • Ponce, V. M., 1995. Hydrologic and environmental impact of the Paraná-Paraguay waterway on the Pantanal of Mato Grosso, Brazil: A reference study. San Diego State University.

  • Sanseverino, A. M., D. Bastviken, I. Sundh, J. Pickova & A. Enrich-Prast, 2012. Methane carbon supports aquatic food webs to the fish level. PLoS ONE 7(8): e42723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sazima, I. & C. Zamprogno, 1985. Use of water hyacinths as shelter, foraging place, and transport by young piranhas, Serrasalmus spilopleura. Environmental Biology of Fishes 12(3): 237–240.

    Article  Google Scholar 

  • Scarabotti, P. A., J. A. López & M. Pouilly, 2011. Flood pulse and the dynamics of fish assemblage structure from neotropical floodplain lakes. Ecology of Freshwater Fish 20(4): 605–618.

    Article  Google Scholar 

  • Scheffer, M. & S. R. Carpenter, 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. TRENDS in Ecology and Evolution 18(12): 648–656.

    Article  Google Scholar 

  • Stoner, A. W., 2004. Effect of environmental variables on fish feeding ecology: implications for the performance of baited fishing gear and stock assessment. Journal of Fish Biology 65: 1445–1471.

  • Teixeira-de Mello, F., M. Meerhoff, Z. Pekcan-Hekim & E. Jeppesen, 2009. Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshwater Biology 54: 1202–1215.

  • Utne-Palm, A. C., 2002. Visual feeding of fish in a turbid environment: physical and behavioural aspects. Marine and Freshwater Behaviour and Physiology 35: 111–128.

    Article  Google Scholar 

  • Villamagna, A. & B. Murphy, 2010. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshwater Biology 55(2): 282–298.

    Article  Google Scholar 

  • Ximenes, L. Q. L., L. A. D. F. Mateus & J. M. F. Penha, 2011. Variação temporal e espacial na composição de guildas alimentares da ictiofauna em lagoas marginais do Rio Cuiabá, Pantanal Norte. Biota Neotropica 11(1): 205–215.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Juan Pablo Pacheco and Placiano Lima for field sampling collaboration and Jeater Santos for the wind information. Financial support: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Brasil (453919/2012-0, 490675/2010-7), FAPEMAT (484619/2011) and DICYT-MEC. VH was partially supported by CNPq (309700/2013-2), TSF by postdoctoral Grant 2010/11269-2, São Paulo Research Foundation (FAPESP) and FTM, NM, and CI were supported by SNI-ANII (Uruguay).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Franco Teixeira-de Mello or Valdeci Antonio de Oliveira.

Additional information

Guest editors: M. Beklioğlu, M. Meerhoff, T. A. Davidson, K. A. Ger, K. E. Havens & B. Moss / Shallow Lakes in a Fast Changing World

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira-de Mello, F., de Oliveira, V.A., Loverde-Oliveira, S.M. et al. The structuring role of free-floating plants on the fish community in a tropical shallow lake: an experimental approach with natural and artificial plants. Hydrobiologia 778, 167–178 (2016). https://doi.org/10.1007/s10750-015-2447-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2447-2

Keywords

Navigation