Skip to main content

Advertisement

Log in

Genetic relationships in bipolar species of the protist ciliate, Euplotes

  • BIOLOGY OF THE ROSS SEA
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Protists thrive in polar oceans, where they represent a major driving force for globally important biogeochemical cycles and a key food-web component. Their biogeography is frequently associated to bipolar patterns of distribution. Although conceptually well supported by apparently unrestricted migration rates, the experimental certification of these patterns copes with the protist paucity of morphological characters with taxonomic value and difficulties in applying conventional species concepts. We studied three marine species of the ciliate Euplotes, E. euryhalinus, E. nobilii, and E. petzi, for their bipolar distribution by comparing the SSU-rRNA gene sequences and mating interactions of Antarctic, Patagonian, and Arctic strains. Each species was analogously found not to carry significantly varied SSU-rRNA gene sequences, implying a common occurrence of trans-equatorial genetic mixing. However, mating analyses revealed significant inter-species differences. Scarce Antarctic × Arctic strain mating compatibility distinguished E. petzi from E. euryhalinus and E. nobilii, in which mating pairs between Antarctic and Arctic strains were successfully induced. Yet, E. nobilii was the only one of the two species to show cross-fertilizing and fertile mating pairs. Taking the biological concept of species as discriminatory, it was thus concluded that only E. nobilii warrants the definition of genuine bipolar species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achilles-Day, U. E. M., T. Pröschold & J. G. Day, 2008. Phylogenetic position of the freshwater ciliate Euplotes daidaleos within the family of Euplotidae, obtained from small subunit rDNA gene sequence. Denisia 23: 411–416.

    Google Scholar 

  • Agatha, S., M. Spindler & N. Wilbert, 1993. Ciliated protozoa (Ciliophora) from Arctic sea ice. Acta Protozoologica 32: 261–268.

    Google Scholar 

  • Alimenti, C., A. Vallesi, B. Pedrini, K. Wüthrich & P. Luporini, 2009. Molecular cold-adaptation: comparative analysis of two homologous families of psychrophilic and mesophilic signal proteins of the protozoan ciliate, Euplotes. IUBMB Life 61: 838–845.

    Article  CAS  PubMed  Google Scholar 

  • Armbrust, E. V., 2009. The life of the diatoms in the world’s oceans. Nature 459: 185–192.

    Article  CAS  PubMed  Google Scholar 

  • Candelori, A., P. Luporini, C. Alimenti & A. Vallesi, 2013. Characterization and expression of the gene encoding En-MAPK1, an intestinal cell kinase (ICK)-like kinase activated by the autocrine pheromone-signaling loop in the polar ciliate, Euplotes nobilii. International Journal of Molecular Sciences 14: 7457–7467.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen, X., Y. Zhao, S. A. Al-Farraj, S. A. Al-Quraishy, H. A. El-Serehy, C. Shao & K. A. S. Al-Rasheid, 2013. Taxonomic descriptions of two marine ciliates, Euplotes dammamensis n. sp. and Euplotes balteatus (Dujardin, 1841) Kahl, 1932 (Ciliophora Spirotrichea, Euplotida), collected from the Arabian Gulf, Saudi Arabia. Acta Protozoologica 52: 73–89.

    Google Scholar 

  • Chiappori, F., S. Pucciarelli, I. Merelli, P. Ballarini, C. Miceli & L. Milanesi, 2012. Structural thermal adaptation of β-tubulins from the Antarctic psychrophilic protozoan Euplotes focardii. Proteins 80: 1154–1166.

    Article  CAS  PubMed  Google Scholar 

  • Darling, K. F. & C. M. Wade, 2008. The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Marine Micropaleontology 67: 216–238.

    Article  Google Scholar 

  • Darling, K. F., C. M. Wade, I. A. Steward, D. Kroon, R. Dingle & A. J. Leigh Brown, 2000. Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature 405: 43–47.

    Article  CAS  PubMed  Google Scholar 

  • de Vargas, C., L. Zaninetti, H. Hilbrecht & J. Pawlowski, 1997. Phylogeny and rates of molecular evolution of planktonic foraminifera: SSU rDNA sequences compared to fossil records. Journal of Molecular Evolution 45: 285–294.

  • Di Giuseppe, G., M. Barbieri, A. Vallesi, P. Luporini & F. Dini, 2013a. Phylogeographical pattern of Euplotes nobilii, a protist ciliate with a bipolar biogeographical distribution. Molecular Ecology 22: 4029–4037.

    Article  PubMed  Google Scholar 

  • Di Giuseppe, G., F. Dini, C. Alimenti, A. Vallesi & P. Luporini, 2013b. Pole to pole gene flow in protozoan ciliates. In Di Prisco, G. & C. Verde (eds), Adaptation and Evolution in Marine Environments, Vol. 2. Springer, Berlin: 55–66.

    Chapter  Google Scholar 

  • Di Giuseppe, G., F. Erra, F. Dini, A. Alimenti, A. Vallesi, B. Pedrini, K. Wüthrich & P. Luporini, 2011. Antarctic and Arctic populations of the ciliate Euplotes nobilii show common pheromone mediated cell-cell signaling and cross-mating. Proceedings of the National Academy of Sciences of the United States of America 108: 3181–3186.

    Article  PubMed Central  PubMed  Google Scholar 

  • Di Giuseppe, G., F. Erra, F. P. Frontini, F. Dini, A. Vallesi & P. Luporini, 2014. Improved description of the bipolar ciliate, Euplotes petzi, and definition of its basal position in the Euplotes phylogenetic tree. European Journal of Protistology 50: 402–411.

    Article  PubMed  Google Scholar 

  • Dini, F. & D. Nyberg, 1993. Sex in ciliates. In Jones, J. G. (ed.), Advances in Microbial Ecology. Plenum Press, New York: 85–153.

    Chapter  Google Scholar 

  • Dolan, J. R., E. J. Yang, S. H. Lee & S. Y. Kim, 2013. Tintinnid ciliates of Amundsen Sea (Antarctica) plankton communities. Polar Research 32: 19784.

    Article  Google Scholar 

  • Ehrenberg, C. G., 1844. Einige vorläufige Resultate seiner Untersuchungen der ihm von der Südpol reise des Captain Ross, so wie von den Herren Schayer und Darwin zugekommenen Materialien über das Verhalten des kleinsten Lebens in den Oceanen und den grössten bisher zugänglichen Tiefen des Weltmeeres. Bericht über die zur Bekanntmachung Geeigneten Verhandlungen Der Königl. Preuss. Akademie Der Wissenschaften zu Berlin 1844: 182–207

  • Falkowski, P. G., M. E. Katz, A. H. Knoll, A. Quigg, J. A. Raven, O. Schofield & F. J. R. Taylor, 2008. The evolution of modern eukaryotic phytoplankton. Science 305: 354–360.

    Article  Google Scholar 

  • Felsenstein, J., 1988. Phylogenies from molecular sequences: inference and reliability. Annual Review of Genetics 22: 521–565.

    Article  CAS  PubMed  Google Scholar 

  • Fensome, R. A., R. A. MacRae, J. M. Moldowan, F. J. R. Taylor & G. L. Williams, 1996. The early Mesozoic radiation of dinoflagellates. Paleobiology 22: 329–338.

    Google Scholar 

  • Finkelstein, S. A., J. Bunbury, K. Gajewski, A. P. Wolfe, J. K. Adams & J. E. Devlin, 2014. Evaluating diatom-derived Holocene pH reconstructions for Arctic lakes using an expanded 171-lake training set. Journal of Quaternary Science 29: 249–260.

    Article  Google Scholar 

  • Génermont, J., V. Machelon & M. Tuffrau, 1976. Données expérimentales relatives au problème de l’espèce dans le genre Euplotes (Ciliés hypotriches). Protistologica 12: 239–248.

    Google Scholar 

  • Geralt, M., C. Alimenti, A. Vallesi, P. Luporini & K. Wüthrich, 2013. Thermodynamic stability of psychrophilic and mesophilic pheromones of the protozoan ciliate Euplotes. Biology 2: 142–150.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gersonde, R., 1990. The paleontological significance of fossil diatoms from high latitude oceans. In Medlin, L. K. & J. Priddle (eds), Polar Marine Diatoms. British Antarctic Survey, Cambridge: 57–63.

    Google Scholar 

  • Hall, T. A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium 41: 95–98.

  • Jiang, J., Q. Zhang, X. Hu, C. Shao, K. A. S. Al-Rasheid & W. Song, 2010a. Two new marine ciliates, Euplotes sinicus sp. nov. and Euplotes parabalteatus sp. nov., and a new small subunit rRNA gene sequence of Euplotes rariseta (Ciliophora, Spirotrichea, Euplotida). International Journal of Systematic and Evolutionary Microbiology 60: 1241–1251.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, J., Q. Zhang, A. Warren, K. A. S. Al-Rasheid & W. Song, 2010b. Morphology and SSU rRNA gene-based phylogeny of two marine Euplotes species, E. orientalis spec. nov. and E. raikovi Agamaliev, 1966 (Ciliophora, Euplotida). European Journal of Protistology 46: 121–132.

    Article  PubMed  Google Scholar 

  • Kepner Jr, R. L., R. A. Jr Wharton & D. W. Coats, 1999. Ciliated protozoa of two Antarctic lakes: analysis by quantitative protargol staining and examination of artificial substrates. Polar Biology 21: 285–294.

    Article  PubMed  Google Scholar 

  • Knox, G., 1994. The Biology of Southern Ocean. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lovejoy, C., 2014. Changing views of Arctic protists (marine microbial eukaryotes) in a changing Arctic. Acta Protozoologica 53: 91–100.

    Google Scholar 

  • Lovejoy, C., R. Massana & C. Pedros-Alio, 2006. Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Applied and Environmental Microbiology 72: 3085–3095.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Medlin, L., H. J. Elwood, S. Stickel & M. L. Sogin, 1988. The characterization of enzymatically amplified eukaryotic 16S-liker RNA-coding regions. Gene 71: 491–499.

    Article  CAS  PubMed  Google Scholar 

  • Mieczan, T., D. Gorniek, A. Swiatecki, M. Zdanowski & M. Tarkowska-Kukuryk, 2013. The distribution of ciliates on Ecology Glacier (King George Island, Antarctica): relationships between species assemblages and environmental parameters. Polar Biology 36: 249–258.

    Article  Google Scholar 

  • Montresor, M., C. Lovejoy, L. Orsini, G. Procaccini & S. Roy, 2003. Bipolar distribution of the cyst-forming dinoflagellate Polarella glacialis. Polar Biology 26: 186–194.

    Google Scholar 

  • Nobili, R., P. Luporini & F. Dini, 1978. Breeding systems, species relationships and evolutionary trends in some marine species of Euplotidae. In Battaglia, B. & J. A. Beardmore (eds), Marine Organisms: Genetics, Eecology and Evolution. Plenum Press, New York: 591–616.

    Google Scholar 

  • Pawlowski, J., J. Fahrni, B. Lecroq, D. Longet, N. Cornelius, L. Excoffier, T. Cedhagen & A. J. Gooday, 2007. Bipolar gene flow in deep-sea benthic foraminifera. Molecular Ecology 16: 4089–4096.

    Article  CAS  PubMed  Google Scholar 

  • Pedrini, B., W. J. Placzek, E. Koculi, C. Alimenti, A. La Terza, P. Luporini & K. Wüthrich, 2007. Cold-adaptation in sea-water-borne signal proteins: sequence and NMR structure of the pheromone En-6 from the Antarctic ciliate Euplotes nobilii. Journal of Molecular Biology 372: 277–286.

    Article  CAS  PubMed  Google Scholar 

  • Petroni, G., F. Dini, F. Verni & G. Rosati, 2002. A molecular approach to the tangled intrageneric relationships underlying phylogeny in Euplotes (Ciliophora, Spirotrichea). Molecular Phylogenetics and Evolution 22: 118–130.

    Article  CAS  PubMed  Google Scholar 

  • Petz, W., 2004. Ciliate biodiversity in Antarctic and Arctic freshwater habitats – a bipolar comparison. European Journal of Protistology 39: 491–494.

    Article  Google Scholar 

  • Petz, W., 2005. Ciliates. In Scott, F. J. & H. J. Marchant (eds), Antarctic Marine Protists. Australian Biological Resources Study, Camberra: 347–448.

    Google Scholar 

  • Petz, W. & W. Foissner, 1997. Morphology and infraciliature of some soil ciliates (Protozoa, Ciliophora) from continental Antarctica, with notes on the morphogenesis of Sterkiella histriomuscorum. Polar Records 33: 307–326.

    Article  Google Scholar 

  • Petz, W., W. Song & N. Wilbert, 1995. Taxonomy and ecology of the ciliate fauna (Protozoa, Ciliophora) in the endopagial and pelagial of the Weddel Sea, Antarctica. Stapfia 40: 1–223.

    Google Scholar 

  • Petz, W., A. Valbonesi, U. Schiftner, A. Quesada & C. Ellis-Evans, 2007. Ciliate biogeography in Antarctic and Arctic freshwater ecosystems: endemism or global distribution of species? FEMS Microbial Ecology 59: 396–408.

    Article  CAS  Google Scholar 

  • Posada, D. & K. A. Crandall, 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818.

    Article  CAS  PubMed  Google Scholar 

  • Ronquist, F. & J. P. Huelsenbeck, 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, H. A., K. Strimmer, M. Vingron & A. von Haeseler, 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18: 502–504.

    Article  CAS  PubMed  Google Scholar 

  • Scott, F. J. & H. J. Marchant, 2005. Antarctic Marine Protists. Australian Biological Resources Study, Camberra.

    Google Scholar 

  • Sims, P. A., D. G. Mann & L. K. Medlin, 2006. Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45: 361–402.

    Article  Google Scholar 

  • Sorokin, Y. I., 1999. Aquatic Marine Ecology. Backhuys, Leiden.

    Google Scholar 

  • Souffreau, C., H. Verbruggen, A. P. Wolfe, P. Vanormelingen, P. A. Siver, E. J. Cox, D. G. Mann, B. Van de Vijver, K. Sabbe & W. Vyverman, 2011. A time-calibrated multi-gene phylogeny of the diatom genus Pinnularia. Molecular Phylogenetics and Evolution 61: 866–879.

    Article  PubMed  Google Scholar 

  • Swofford, D. L., 2003. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Sinauer Associates, Sunderland, Massachusetts.

  • Taylor, F. J. R., M. Hoppenrath & J. F. Soldiarrage, 2008. Dinoflagellate diversity and distribution. Biodiversity Conservation 17: 407–418.

    Article  Google Scholar 

  • Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin & D. G. Higgins, 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 4: 4876–4882.

    Article  Google Scholar 

  • Valbonesi, A. & P. Luporini, 1990a. Description of two new species of Euplotes (Ciliophora, Hypotrichida) from Antarctica. Polar Biology 11: 47–53.

    Article  Google Scholar 

  • Valbonesi, A. & P. Luporini, 1990b. A new marine species of Euplotes (Ciliophora, Hypotrichida) from Antarctica. Bulletin of the British Museum of Natural History (Zoology) 56: 57–61.

    Google Scholar 

  • Valbonesi, A. & P. Luporini, 1993. Biology of Euplotes focardii, an Antarctic ciliate. Polar Biology 13: 489–493.

    Article  Google Scholar 

  • Valbonesi, A., C. Ortenzi & P. Luporini, 1992. The species problem in a ciliate with a high multiple mating type system, Euplotes crassus. Journal of Protozoology 39: 45–54.

    Article  Google Scholar 

  • Vallesi, A., C. Alimenti, G. Di Giuseppe, F. Dini & P. Luporini, 2012. Coding genes and molecular structures of the diffusible signaling proteins (pheromones) of the polar ciliate, Euplotes nobilii. Marine Genomics 8: 9–13.

    Article  PubMed  Google Scholar 

  • Vallesi, A., C. Alimenti, G. Di Giuseppe, F. Dini, B. Pedrini, K. Wüthrich & P. Luporini, 2010. The water-born protein pheromones of the polar protozoan ciliate, Euplotes nobilii: coding genes and molecular structures. Polar Science 4: 237–244.

    Article  Google Scholar 

  • Vincent, W. F., 1988. Microbial Ecosystems of Antarctica. Cambridge University Press, Cambridge.

    Google Scholar 

  • Wilbert, N. & W. Song, 2005. New contributions to the marine benthic ciliates from the Antarctic area, including description of seven new species (Protozoa, Ciliophora). Journal of Natural History 39: 935–973.

    Article  Google Scholar 

  • Wilbert, N. & W. Song, 2008. A further study on littoral ciliates (Protozoa, Ciliophora) near King George Island, Antarctica, with description of a new genus and seven new species. Journal of Natural History 42: 979–1012.

    Article  Google Scholar 

Download references

Acknowledgments

The authors warmly thank anonymous reviewers for insightful and constructive criticisms, and Dr. Gill Philip for editing the English usage. The research was financially supported by the “Programma Nazionale di Ricerca in Antartide” (PNRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Vallesi.

Additional information

Guest editors: Diego Fontaneto & Stefano Schiaparelli / Biology of the Ross Sea and Surrounding Areas in Antarctica

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Giuseppe, G., Dini, F., Vallesi, A. et al. Genetic relationships in bipolar species of the protist ciliate, Euplotes . Hydrobiologia 761, 71–83 (2015). https://doi.org/10.1007/s10750-015-2274-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2274-5

Keywords

Navigation