Skip to main content

Advertisement

Log in

Ecoregional, catchment, and reach-scale environmental factors shape functional-trait structure of stream fish assemblages

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Patterns of association between functional traits and environmental gradients can improve understanding of species assemblage structure from local to regional scales, and therefore may be useful for natural resource management. We measured functional traits related to trophic ecology, habitat use, and life-history strategies of fishes and examined their associations with environmental factors in the Brazos and Trinity River basins in Central Texas. We also examined the relationship between functional diversity of fish assemblages and indices of biotic integrity and habitat quality. Environmental characteristics at the local reach and catchment scales, including the extent of forested area in the watershed, amount of land developed for urban and agricultural uses, stream size, substrate characteristics, and availability of riffle and pool habitats, were significantly associated with functional trait composition of fish assemblages. Broad physiographic differences between ecoregions also had a large influence on taxonomic and functional assemblage structure. In general, the volume of functional trait space occupied by fish assemblages was greatest in streams with high habitat quality scores located within landscapes having less alteration from agriculture and urban development. Distributions of functional traits in fish assemblages might provide an additional basis for assessment of stream condition in relation to environmental impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allan, J. D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution & Systematics 35: 257–284.

    Article  Google Scholar 

  • Allan, J. D. & A. S. Flecker, 1993. Biodiversity conservation in running waters. BioScience 43: 32–43.

    Article  Google Scholar 

  • Angermeier, P. L. & M. R. Winston, 1999. Characterizing fish community diversity across Virginia landscapes: prerequisite for conservation. Ecological Applications 9: 335–349.

    Article  Google Scholar 

  • Balon, E. K., 1975. Reproductive guilds of fishes: a proposal and definition. Journal of the Fisheries Resource Board of Canada 32: 821–864.

    Article  Google Scholar 

  • Barber, C. B., D. P. Dobkin & H. Huhdanpaa, 1996. The Quickhull algorithm for convex hulls. Association for Computing Machinery Transactions on Mathematical Software 22: 469–483.

    Article  Google Scholar 

  • Berkman, H. E. & C. F. Rabini, 1987. Effect of siltation on stream fish communities. Environmental Biology of Fishes 18: 285–294.

    Article  Google Scholar 

  • Brind’Amour, A., D. Boisclair, S. Dray & P. Legendre, 2011. Relationships between species feeding traits and environmental conditions in fish communities: a three-matrix approach. Ecological Applications 21: 363–377.

    Article  PubMed  Google Scholar 

  • Brown, L. R., 2000. Fish communities and their associations with environmental variables, lower San Joaquin River drainage, California. Environmental Biology of Fishes 57: 251–269.

    Article  Google Scholar 

  • Charvet, S., B. Statzner, P. Usseglio-Polatera & B. Dumont, 2000. Traits of benthic macroinvertebrates in semi-natural French streams: an initial application to biomonitoring in Europe. Freshwater Biology 43: 277–296.

    Article  Google Scholar 

  • Cornwell, W. K., D. W. Schwilk & D. D. Ackerly, 2006. A trait-based test for habitat filtering: convex hull volume. Ecology 87: 1465–1471.

    Article  PubMed  Google Scholar 

  • Culp, J. M., D. G. Armanini, M. J. Dunbar, J. M. Orlofske, N. L. Poff, A. I. Pollard, A. G. Yates & G. C. Hose, 2011. Incorporating traits in aquatic biomonitoring to enhance causal diagnosis and prediction. Integrated Environmental Assessment and Management 7: 187–197.

    Article  PubMed  Google Scholar 

  • Doledec, S. & B. Statzner, 2010. Responses of freshwater biota to human disturbances: contribution of J-NABS to developments in ecological integrity assessments. Journal of the North American Benthological Society 29: 286–311.

    Article  Google Scholar 

  • Doledec, S., D. Chessel, C. F. J. TerBraak & S. Champley, 1996. Matching species traits to environmental variables: a new three-table ordination method. Environmental and Ecological Statistics 3: 143–166.

    Article  Google Scholar 

  • Doledec, S., N. Phillips, M. R. Scarsbrook, R. H. Riley & C. R. Townsend, 2006. Comparison of structural and functional approaches to determining landuse effects on grassland stream invertebrate communities. Journal of the North American Benthological Society 25: 44–60.

    Article  Google Scholar 

  • Doledec, S., N. Phillips & C. R. Townsend, 2011. Invertebrate community responses to land use at a broad spatial scale: trait and taxonomic measures compared in New Zealand rivers. Freshwater Biology 56: 1670–1688.

    Article  Google Scholar 

  • Dray, S. & A. B. Dufour, 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22: 1–20.

    Google Scholar 

  • Fausch, K. D., J. Lyons, J. R. Karr & P. L. Angermeier, 1990. Fish communities as indicators of environmental degradation. American Fisheries Society Symposium 8: 123–144.

    Google Scholar 

  • Fonseca, C. R. & G. Ganade, 2001. Species functional redundancy, random extinctions and the stability of ecosystems. Journal of Ecology 89: 118–125.

    Article  Google Scholar 

  • Frimpong, E. A. & P. L. Angermeier, 2009. Fish traits: a database of ecological and life-history traits of freshwater fishes of the United States. Fisheries 34: 487–495.

    Article  Google Scholar 

  • Garnier, E., J. Cortez, G. Billes, M. Navas, C. Roumet, M. Debussche, G. Laurent, A. Blanchard, D. Aubry, A. Bellmann, C. Neill & J. Toussaint, 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85: 2630–2637.

    Article  Google Scholar 

  • Gatz, A. J., 1979. Ecological morphology of freshwater stream fishes. Tulane Studies in Zoology and Botany 21: 91–124.

    Google Scholar 

  • Gayraud, S., B. Statzner, P. Bady, A. Haybach, F. Scholl, P. Usseglio-Polatera & M. Bacchi, 2003. Invertebrate traits for the biomonitoring of large European rivers: an initial assessment of alternative metrics. Freshwater Biology 48: 2045–2064.

    Article  Google Scholar 

  • Goldstein, R. M. & M. R. Meador, 2004. Comparison of fish species traits from small streams to large rivers. Transactions of the American Fisheries Society 133: 971–983.

    Article  Google Scholar 

  • Griffith, G. E., S. A. Bryce, J. M. Omernik, J. A. Comstock, A. C. Rogers, B. Harrison, S. L. Hatch & D. Bezanson, 2004. Ecoregions of Texas (Color Poster with Map, Descriptive Text, and Photographs). U.S. Geological Survey, Reston, VA.

    Google Scholar 

  • Heino, J., D. Schmera & T. Eros, 2013. A macroecological perspective of trait patterns in stream communities. Freshwater Biology 58: 1539–1555.

    Article  Google Scholar 

  • Hoagstrom, C. W. & C. R. Berry, 2008. Morphological diversity among fishes in a Great Plains river drainage. Hydrobiologia 596: 367–386.

    Article  Google Scholar 

  • Hoeinghaus, D. J., K. O. Winemiller & J. S. Birnbaum, 2007. Local and regional determinants of stream fish assemblage structure: inferences based on taxonomic vs. functional groups. Journal of Biogeography 34: 324–338.

    Article  Google Scholar 

  • Hubbs, C., 1957. Distributional patterns of Texas freshwater fishes. Southwestern Naturalist 2: 89–104.

    Article  Google Scholar 

  • Hugueny, B. & M. Pouilly, 1999. Morphological correlates of diet in an assemblage of West African freshwater fishes. Journal of Fish Biology 54: 1310–1325.

    Article  Google Scholar 

  • Ibañez, C., T. Oberdorff, G. Teugels, V. Mamononekene, S. Lavoué, Y. Fermon, D. Paugy & A. K. Toham, 2007. Fish assemblage structure and function along environmental gradients in rivers of Gabon (Africa). Ecology of Freshwater Fish 16: 315–334.

    Article  Google Scholar 

  • Ingram, T. & J. B. Shurin, 2009. Trait-based assembly and phylogenetic structure in northeast Pacific rockfish assemblages. Ecology 90: 2444–2453.

    Article  PubMed  Google Scholar 

  • Karr, J. R., 1981. Assessment of biotic integrity using fish communities. Fisheries 6: 21–27.

    Article  Google Scholar 

  • Karr, J. R., K. D. Fausch, P. L. Angermeier, P. R. Yant & I. J. Schlosser, 1986. Assessing biological integrity in running waters: a method and its rationale. Illinois Natural History Survey Special Publication 5. Champaign, IL.

  • Kearney, M. & W. Porter, 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters 12: 334–350.

    Article  PubMed  Google Scholar 

  • Keddy, P. A., 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3: 157–164.

    Article  Google Scholar 

  • King, R. S., M. E. Baker, D. F. Whigham, D. E. Weller, T. E. Jordan, P. F. Kazyak & M. K. Hurd, 2005. Spatial considerations for linking watershed land cover to ecological indicators in streams. Ecological Applications 15: 137–153.

    Article  Google Scholar 

  • Laliberte, E. & P. Legendre, 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91: 299–305.

    Article  PubMed  Google Scholar 

  • Lamouroux, N., N. L. Poff & P. L. Angermeier, 2002. Intercontinental convergence of stream fish community traits along geomorphic and hydraulic gradients. Ecology 83: 1792–1807.

    Article  Google Scholar 

  • Linam, G. W., R. J. Kleinsasser & K. B. Mayes, 2002. Regionalization of the Index of Biotic Integrity for Texas streams. Texas Parks and Wildlife Department River Studies Report No. 17. TPWD, Austin, TX.

  • McGill, B. J., B. J. Enquist, E. Weiher & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends in Ecology and Evolution 21: 178–185.

    Article  PubMed  Google Scholar 

  • Mellado Díaz, A., M. L. Suarez Alonso & M. R. Vidal-Abarca Gutiérrez, 2008. Biological traits of stream macroinvertebrates from a semi-arid catchment: patterns along complex environmental gradients. Freshwater Biology 53: 1–21.

    Google Scholar 

  • Montaña, C. G. & K. O. Winemiller, 2013. Evolutionary convergence in Neotropical cichlids and Nearctic centrarchids: evidence from morphology, diet and stable isotope analysis. Biological Journal of the Linnean Society 109: 146–164.

    Article  Google Scholar 

  • Olden, J. D. & M. J. Kennard, 2010. Intercontinental comparison of fish life history strategies along a gradient of hydrological variability. American Fisheries Society Symposium 73: 83–107.

    Google Scholar 

  • Olden, J. D., M. J. Kennard, F. Leprieur, P. A. Tedesco, K. O. Winemiller & E. Garcia-Berthou, 2010. Conservation biogeography of freshwater fishes: recent progress and future challenges. Diversity and Distributions 16: 496–513.

    Article  Google Scholar 

  • Pease, A. A., J. M. Taylor, K. O. Winemiller & R. S. King, 2011. Multi-scale environmental influences on fish assemblage structure in central Texas streams. Transactions of the American Fisheries Society 140: 1409–1427.

    Article  Google Scholar 

  • Pease, A. A., A. A. Gonzalez-Diaz, R. Rodiles-Hernandez & K. O. Winemiller, 2012. Functional diversity and trait-environment relationships of stream fish assemblages in a large tropical catchment. Freshwater Biology 57: 1060–1075.

    Article  Google Scholar 

  • Perkin, J. S. & T. H. Bonner, 2011. Long-term changes in flow regime and fish assemblage composition in the Guadalupe and San Marcos Rivers of Texas. River Research and Applications 27: 566–579.

    Article  Google Scholar 

  • Perkin, J. S. & K. B. Gido, 2011. Stream fragmentation thresholds for a reproductive guild of Great Plains fishes. Fisheries 36: 371–383.

    Article  Google Scholar 

  • Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.

    Article  Google Scholar 

  • Poff, N. L. & J. D. Allan, 1995. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 76: 606–627.

    Article  Google Scholar 

  • Poff, N. L., J. D. Olden, N. K. M. Vieira, D. S. Finn, M. P. Simmons & B. C. Kondratieff, 2006. Functional trait niches of North American lotic insects:traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society 25: 730–755.

    Article  Google Scholar 

  • Pont, D., B. Hugueny, U. Beier, D. Goffaux, A. Melcher, R. Noble, C. Rogers, N. Roset & S. Schmutz, 2006. Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages. Journal of Applied Ecology 43: 70–80.

    Article  Google Scholar 

  • Richards, C., L. B. Johnson & G. E. Host, 1996. Landscape-scale influences on stream habitats and biota. Canadian Journal of Fisheries and Aquatic Sciences 53: 95–311.

    Article  Google Scholar 

  • Roth, N. E., J. D. Allan & D. L. Erickson, 1996. Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology 11: 141–156.

    Article  Google Scholar 

  • Rowe, D. C., C. L. Pierce & T. F. Wilton, 1988. Physical habitat and fish assemblage relationships with landscape variables at multiple spatial scales in wadeable Iowa streams. North American Journal of Fisheries Management 29: 1333–1351.

    Article  Google Scholar 

  • Scarnecchia, D. L., 1988. The importance of streamlining in influencing fish community structure in channelized and unchannelized reaches of a Prairie stream. Regulated Rivers: Research and Management 2: 155–166.

    Article  Google Scholar 

  • Schlosser, I. J., 1982. Fish community structure and function along two habitat gradients in a headwater stream. Ecological Monographs 52: 395–414.

    Article  Google Scholar 

  • Schleuter, D., M. Daufresne, F. Massol & C. Argillier, 2010. A user’s guide to functional diversity indices. Ecological Monographs 80: 469–484.

    Article  Google Scholar 

  • Sibbing, F. A. & L. A. J. Nagelkerke, 2001. Resource partitioning by Lake Tana barbs predicted from fish morphometrics and prey characteristics. Reviews in Fish Biology and Fisheries 10: 393–437.

    Article  Google Scholar 

  • Simon, T. P., 1991. Development of index of biotic integrity expectations for the ecoregions of Indiana. I. Central Corn Belt Plain. EPA 905/9-91/025. U.S. Environmental Protection Agency, Chicago, IL.

  • Snyder, C. D., J. A. Young, R. Villella & D. P. Lemarie, 2003. Influences of upland and riparian land use patterns on stream biotic integrity. Landscape Ecology 18: 647–664.

    Article  Google Scholar 

  • Stanley, C. E., J. M. Taylor & R. S. King, 2012. Coupling fish community structure with instream flow and habitat connectivity between two hydrologically extreme years. Transactions of the American Fisheries Society 141: 1000–1015.

    Article  Google Scholar 

  • Strecker, A. L., J. D. Olden, J. B. Whittier & C. P. Paukert, 2011. Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity. Ecological Applications 21: 3002–3013.

    Article  Google Scholar 

  • Taylor, J. M., R. S. King, A. A. Pease & K. O. Winemiller, 2014. Nonlinear response of stream ecosystem structure to low-level phosphorus enrichment. Freshwater Biology 59: 969–984.

    Article  CAS  Google Scholar 

  • Tedesco, P., B. Hugueny, T. Oberdorff, H. H. Durr, S. Merigoux & B. de Merona, 2008. River hydrological seasonality influences life history strategies of tropical riverine fishes. Oecologia 156: 691–702.

    Article  CAS  PubMed  Google Scholar 

  • Texas Commission on Environmental Quality, 2007. Surface Water Quality Monitoring Procedures, Vol. 2. Report No. RG-416. Texas Commission on Environmental Quality, Austin, TX.

  • Tomanova, S., N. Moya & T. Oberdorff, 2008. Using macroinvertebrate biological traits for assessing biotic integrity of neotropical streams. River Research and Applications 24: 1230–1239.

    Article  Google Scholar 

  • Townsend, C. R. & A. G. Hildrew, 1994. Species traits in relation to a habitat templet for river systems. Freshwater Biology 31: 265–275.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Villeger, S., N. W. H. Mason & D. Mouillot, 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89: 2290–2301.

    Article  PubMed  Google Scholar 

  • Walser, C. A. & H. L. Bart, 1999. Influence of agriculture on in-stream habitat and fish community structure in piedmont watersheds of the Chattahoochie River system. Ecology of Freshwater Fish 8: 237–246.

    Article  Google Scholar 

  • Wang, L., J. Lyons, P. Kanehl & R. Bannerman, 2001. Impacts of urbanization on stream habitat and fish across multiple spatial scales. Environmental Management 28: 255–266.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., P. W. Seelbach & J. Lyons, 2006. Effects of levels of human disturbance on the influence of catchment, riparian, and reach-scale factors on fish assemblages. American Fisheries Society Symposium 48: 199–219.

    Google Scholar 

  • Webb, P. W., 1984. Body form, locomotion and foraging in aquatic vertebrates. American Zoologist 24: 107–120.

    Google Scholar 

  • Webb, C. T., J. A. Hoeting, G. M. Ames, M. I. Pyne & N. L. Poff, 2010. A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters 13: 267–283.

    Article  PubMed  Google Scholar 

  • Wilson, J. B., 1999. Guilds, functional types and ecological groups. Oikos 86: 507–522.

    Article  Google Scholar 

  • Winemiller, K. O., 1991. Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecological Monographs 61: 343–365.

    Article  Google Scholar 

  • Winemiller, K. O. & K. A. Rose, 1992. Patterns of life-history diversification in North American fishes: implications for population regulation. Canadian Journal of Fisheries and Aquatic Sciences 49: 2196–2218.

    Article  Google Scholar 

Download references

Acknowledgments

The Texas Commission on Environmental Quality funded this project (Contract 582–6-80304), and M. Fisher and G. Easley provided valuable advice and logistical support. The Texas Parks and Wildlife Department provided collecting permits and Texas Agrilife Research gave administrative support. S. Zeug, D. Hoeinghaus, A. Hoeinghaus, J. V. Montoya, C. Robertson, K. Bulla, C. Montana, S. B. Correa, B. Bachmeyer, W. Weise, Z. Johnson, P. Sims, C. Stanley, J. Grimm, D. Lang, A. Flores, S. Sumpaongoen, E. Hooser, B. Kirchner, and J. Back helped to collect field data. AAP was also supported by the Texas A&M Tom Slick Doctoral Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison A. Pease.

Additional information

Handling editor: Alison King

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2015_2235_MOESM1_ESM.docx

Appendix: Ordination of RLQ scores of environmental variables (left) and functional traits (right) of fish species for stream reaches in a the Cross Timbers, b Texas Blackland Prairies, and c East Central Texas Plains ecoregions. See Tables 1, 2, and 3 for environmental variables and functional traits that correspond to abbreviations (DOCX 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pease, A.A., Taylor, J.M., Winemiller, K.O. et al. Ecoregional, catchment, and reach-scale environmental factors shape functional-trait structure of stream fish assemblages. Hydrobiologia 753, 265–283 (2015). https://doi.org/10.1007/s10750-015-2235-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2235-z

Keywords

Navigation