Skip to main content
Log in

Temporal variability of fauna and the importance of sampling frequency in the hyporheic zone

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Sampling of the hyporheic zone along a polluted stretch of the Arieş River (Romania) showed contrasting biodiversity and abundance patterns at different time scales. The species considered in this study were Crustacea and Oligochaeta and only the more frequently occurring species were included in the analyses. Monthly composition of these species showed a little correlation with physical and chemical parameters. In contrast, when subsets of the monthly samples of the two most abundant species, Microcharon sp. and Diacyclops languidoides, were analyzed, there were strong correlations with at least some of the major physical and chemical parameters (temperature, flow rate, Al, and Fe) in each of the three possible seasonal series. However, correlations between seasonal series were sometimes contradictory and appeared to be artifacts related to sparse data. It is suggested that monthly or more frequent sampling is required for the complete assessment of biodiversity and processes in the hyporheic zone and to study the relationship between the hyporheos and the surface river ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdi, H. & L. J. Williams, 2013. Partial least squares methods: partial least squares correlation and partial least square regression. Methods in Molecular Biology 930: 549–579.

    CAS  PubMed  Google Scholar 

  • Boano, F., R. Revelli & L. Ridolfi, 2007. Bedform-induced hyporheic exchange with unsteady flows. Advances in Water Resources 30: 148–156.

    Article  Google Scholar 

  • Boano, F., R. Revelli & L. Ridolfi, 2010. Effect of streamflow stochasticity on bedform-driven hyporheic exchange. Advances in Water Resources 33: 1367–1374.

    Article  Google Scholar 

  • Bou, C., 1974. Recherches sur les eaux souterraines. 25 – méthodes de récolte dans les eaux souterraines interstitielles. Annales de Spéléologie 29: 611–619.

    Google Scholar 

  • Boulton, A. J., 2000. River ecosystem health down under: assessing ecological condition in riverine groundwater zones in Australia. Ecosystem Health 6: 108–118.

    Article  Google Scholar 

  • Boulton, A. J. & E. H. Stanley, 1996. But the story gets better: subsurface invertebrates in stream ecosystems. Trends in Ecology and Evolution 11: 430.

    Article  CAS  PubMed  Google Scholar 

  • Boulton, A. J., H. M. Valett & S. G. Fisher, 1992. Spatial distribution and taxonomic contribution of the hyporheos of several Sonoran Desert streams. Archiv für Hydrobiologie 125: 37–61.

    Google Scholar 

  • Boulton, A. J., S. Findlay, P. Marmonier, E. H. Stanley & H. M. Valett, 1998. The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology, Evolution, and Systematics 29: 59–81.

    Article  Google Scholar 

  • Boulton, A. J., T. Datry, T. Kasahara, M. Mutz & J. A. Stanford, 2010. Ecology and management of the hyporheic zone: stream-groundwater interactions of running waters and their floodplains. Journal of the North American Benthological Society 29: 26–40.

    Article  Google Scholar 

  • Brunke, M. & T. Gonser, 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology 37: 1–33.

    Article  Google Scholar 

  • Cardenas, M. B., 2008. Surface water-groundwater interface geomorphology leads to scaling of residence times. Geophysical Research Letters 35: L18402. doi:10.1029/2008GL035343.

    Article  Google Scholar 

  • Castellarini, F., M.-J. Dole-Oliver, F. Malard & J. Gibert, 2007a. Modelling the distributions of stygobionts in the Jura Mountains (eastern France). Implications for the protection of groundwaters. Diversity and Distributions 13: 213–224.

    Article  Google Scholar 

  • Castellarini, F., M.-J. Dole-Oliver, F. Malard & J. Gibert, 2007b. Using environmental heterogeneity to assess stygobiotic species richness in the French Jura region with a conservation perspective. Fundamental and Applied Limnology 169: 69–78.

    Article  Google Scholar 

  • Dole-Olivier, M.-J., P. Marmonier, M. Creuzé des Châtelliers & D. Martin, 1994. Interstitial fauna associated with the alluvial floodplains of the Rhône River (France). In Gibert, J., D. L. Danielopol & J. A. Stanford (eds.), Groundwater Ecology. Academic Press, San Diego, CA: 314–346.

    Google Scholar 

  • Dumas, P., C. Bou & J. Gibert, 2001. Groundwater macrocrustaceans as natural indicators of the Ariège Alluvial Aquifer. International Review of Hydrobiology 86: 619–633.

    Article  CAS  Google Scholar 

  • Gibert, J. & L. Deharveng, 2002. Subterranean ecosystems: a truncated functional biodiversity. BioScience 52: 473–481.

    Article  Google Scholar 

  • Gooseff, M. N., 2010. Defining hyporheic zones – advancing our conceptual and operational definitions of where stream water and groundwater meet. Geography Compass 4: 945–955.

    Article  Google Scholar 

  • Hahn, H. J., 2006. The GW-Fauna Index: a first approach to a quantitative ecological assessment of groundwater habitats. Limnologica 36: 119–137.

    Article  Google Scholar 

  • Hayashi, M. & D. O. Rosenberry, 2002. Effects of groundwater exchange on the hydrology and ecology of surface waters. Ground Water 40: 309–316.

    Article  CAS  PubMed  Google Scholar 

  • Herczeg, A. L., F. W. Leaney, J. C. Dighton, S. Lamontagne, S. L. Schiff, A. L. Telfer & M. C. English, 2003. A modern isotope record of changes in water and carbon budgets in a groundwater-fed lake: Blue Lake, South Australia. Limnology and Oceanography 48: 2093–2105.

    Article  CAS  Google Scholar 

  • Krause, S., D. M. Hannah, J. H. Fleckenstein, C. M. Heppell, D. Kaeser, R. Pickup, G. Pinay, A. L. Robertson & P. J. Wood, 2011. Inter-disciplinary perspectives on processes in the hyporheic zone. Ecohydrology 4: 481–499.

    Article  CAS  Google Scholar 

  • Lautz, L. & R. Fanelli, 2008. Seasonal biogeochemical hotspots in the streambed around restoration structures. Biogeochemistry 91: 85–104.

    Article  CAS  Google Scholar 

  • Leigh, C., R. Stubbington, F. Sheldon & A. J. Boulton, 2013. Hyporheic invertebrates as bioindicators of ecological health in temporary rivers: a meta-analysis. Ecological Indicators 32: 62–73.

    Article  Google Scholar 

  • Lindenmayer, D. B., P. Gibbons, M. Bourke, M. Burgman, C. R. Dickman, S. Ferrier, J. Fitzsimons, D. Freudenberger, S. T. Garnett, C. Groves, R. J. Hobbs, R. T. Kingsford, C. Krebs, S. Legge, A. J. Lowe, R. McLean, J. Montambault, H. Possingham, J. Radford, D. Robinson, L. Smallbone, D. Thomas, T. Varcoe, M. Vardon, G. Wardle, J. Woinarski & A. Zerger, 2012. Improving biodiversity monitoring. Austral Ecology 37: 285–294.

    Article  Google Scholar 

  • Levei, E., M. Senila, M. Miclean, B. Abraham, C. Roman, L. Stefanescu & O. T. Moldovan, 2011. Influence of Rosia Poieni and Rosia Montana mining areas on the water quality of Aries River. Environmental Engineering and Management Journal 101: 23–30.

    Google Scholar 

  • Mallard, F., K. Tockner, M.-J. Dole-Oliver & J. V. Ward, 2002. A landscape perspective of surface-subsurface hydrological exchange in river corridors. Freshwater Biology 47: 621–640.

    Article  Google Scholar 

  • Marin, C., A. Tudorache, O. T. Moldovan, I. Povara & G. Rajka, 2010. Assessing the con-tents of arsenic and of some heavy metals in surface flows and in the hyporheic zone of the Aries¸ stream catchment area, Romania. Carpathian Journal of Earth and Environmental Sciences 5: 13–24.

    Google Scholar 

  • McElravy, E. P. & V. Resh, 1991. Distribution and seasonal occurrence of the hyporheic fauna in a northern California stream. Hydrobiologia 220: 233–246.

    Article  Google Scholar 

  • Menció, A., K. L. Korbel & G. C. Hose, 2014. River–aquifer interactions and their relationship to stygofauna assemblages: a case study of the Gwydir River alluvial aquifer (New South Wales, Australia). Science of The Total Environment 479–480: 292–305.

    Article  PubMed  Google Scholar 

  • Moldovan, O. T., E. Levei, C. Marin, M. Banciu, H. L. Banciu, C. Pavelescu, T. Brad, M. Cimpean, I. Meleg, S. Iepure & I. Povara, 2011. Spatial distribution patterns of the hyporheic invertebrate communities in a polluted river in Romania. Hydrobiologia 669: 63–82.

    Article  CAS  Google Scholar 

  • Moldovan, O. T., I. N. Meleg, E. Levei & M. Terente, 2013. A simple method for assessing biotic indicators and predicting biodiversity in the hyporheic zone of a river polluted with metals. Ecological Indicators 2: 412–420.

    Article  Google Scholar 

  • Motaş, C., 1962. Procédé des sondages phréatiques, division du domaine souterrain, classification écologique des animaux souterrains, le psammon. Acta musei macedonici scientiarum naturalium 8: 35–173.

    Google Scholar 

  • Orghidan, T., 1955. Un nouveau domaine de vie souterraine aquatique: le biotope hyporhéique. Buletinul Stiintific al Sectiei de Biologie a Academiei R.P.R. 7: 657–676.

    Google Scholar 

  • Orghidan, T., 1959. Ein neuer Lebensraum des unterirdischen Wassers, der hyporheische Biotop. Archiv fuer Hydrobiologie 55: 392–414.

    Google Scholar 

  • Palmer, M. A., 1990. Temporal and spatial dynamics of meiofauna within the hyporheic zone of Goose Creek, Virginia. Journal of the North America Benthological Society 9: 17–25.

    Article  Google Scholar 

  • Schmidt, S. I., H. J. Hahn, T. J. Hatton & W. F. Humphreys, 2007. Do faunal assemblages reflect the exchange intensity in groundwater zones? Hydrobiologia 583: 1–19.

    Article  CAS  Google Scholar 

  • Smith, J. W. N., 2005. Groundwater – surface water interactions in the hyporheic zone. Environment Agency Science report SC030155/1 EA, Bristol.

  • Stubbington, R., P. J. Wood & A. J. Boulton, 2009. Low flow controls on benthic and hyporheic macroinvertebrate assemblages during supra-seasonal drought. Hydrological Processes 23: 2252–2263.

    Article  Google Scholar 

  • Stubbington, R., P. J. Wood, I. Reid & J. Gunn, 2011. Benthic and hyporheic invertebrate community responses to seasonal flow recession in a karst stream. Ecohydrology 4: 500–511.

    Article  Google Scholar 

  • Stubbington, R. & P. J. Wood, 2013. Benthic and hyporheic invertebrate community response to drought in the lentic headwaters of a temperate stream. Fundamental and Applied Limnology 182: 61–73.

    Article  Google Scholar 

  • Tomlinson, M., A. Boulton, P. Hancock & P. Cook, 2007. Deliberate omission or unfortunate oversight: should stygofaunal surveys be included in routine groundwater monitoring programs. Hydrogeology Journal 15: 1317–1320.

    Article  Google Scholar 

  • Tonina, D. & J. M. Buffington, 2007. Hyporheic exchange in gravel bed rivers with pool-riffle morphology: laboratory experiments and three-dimensional modeling. Water Resources Research 43: 1421–1437.

    Article  Google Scholar 

  • Williams, D. D. & H. B. N. Hynes, 1974. The occurrence of benthos deep in the substratum of a stream. Freshwater Biology 4: 233–256.

    Article  Google Scholar 

  • Wondzell, S. M. & F. J. Swanson, 1996a. Seasonal and storm dynamics of the hyporheic zone of a 4th-order mountain stream.1. Hydrologic processes. Journal of the North American Benthological Society 15: 3–19.

    Article  Google Scholar 

  • Wondzell, S. M. & F. J. Swanson, 1996b. Seasonal and storm dynamics of the hyporheic zone of a 4-th order mountain stream. II. Nitrogen cycling. Journal of the North American Benthological Society 15: 20–34.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Traian Brad, Sanda Iepure, Ioana Nicoleta Meleg, and Claudia Pavelescu for species identification and to Mihai Terente for the map. We are indebted to the two reviewers for the corrections and suggestions and especially to Stuart Halse who considerably improved the quality of the paper. The study was funded by the Romanian Academy and through the grant 31_032/2007 (CNMP, Ministry of Education, Research and Innovation, Romania).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oana Teodora Moldovan.

Additional information

Handling editor: Stuart Anthony Halse

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moldovan, O.T., Levei, E. Temporal variability of fauna and the importance of sampling frequency in the hyporheic zone. Hydrobiologia 755, 27–38 (2015). https://doi.org/10.1007/s10750-015-2215-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2215-3

Keywords

Navigation