Skip to main content
Log in

Investigating possible causal relations among physical, chemical and biological variables across regions in the Gulf of Maine

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We examine potential causal relations between ecosystem variables in four regions of the Gulf of Maine under two major assumptions: (i) a causal cyclic variable will precede, or lead, its effect variable; e.g., a peak (through) in the causal variable will come before a peak (through) in the effect variable. (ii) If physical variables determine regional ecosystem properties, then independent clusters of observations of physical, biological and interaction variables from the same stations will show similar patterns. We use the leading–lagging-strength method to establish leading strength and potential causality, and we use principal component analysis, to establish if regions differ in their ecological characteristics. We found that several relationships for physical and chemical variables were significant, and consistent with “common knowledge” of causal relations. In contrast, relationships that included biological variables differed among regions. In spite of these findings, we found that physical and chemical characteristics of near shore and pelagic regions of the Gulf of Maine translate into unique biological assemblages and unique physical–biological interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, D. M., B. A. Keafer, J. L. Kleindinst, D. J. McGillicuddy, J. L. Martin, K. Norton, C. H. Pilskaln, J. L. Smith, C. R. Sherwood & B. Butman, 2014. Alexandrium fundyense cysts in the Gulf of Maine: long-term time series of abundance and distribution, and linkages to past and future blooms. Deep-Sea Research Part II 103: 6–26.

    Article  Google Scholar 

  • Banse, K., 2013. Reflections about chance in my career, and on the top-down regulated world. Annual Review of Marine Science 5: 1–19.

    Article  PubMed  Google Scholar 

  • Behrenfeld, M. J., 2010. Abandoning sverdrup’s critical depth hypothesis on phytoplankton blooms. Ecology 91(4): 977–989.

    Article  PubMed  Google Scholar 

  • Behrenfeld, M. J. & E. S. Boss, 2014. Resurrecting the ecological underpinnings of ocean plankton blooms. Annual Review of Marine Science 6: 167–194.

    Article  PubMed  Google Scholar 

  • Behrenfeld, M. J., S. C. Doney, I. Lima, E. S. Boss & D. A. Siegel, 2013. Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic spring plankton bloom. Global Biogeochemical Cycles 27(2): 526–540.

    Article  CAS  Google Scholar 

  • Boyce, D. G., M. R. Lewis & B. Worm, 2010. Global phytoplankton decline over the past century. Nature 466(7306): 591–596.

    Article  CAS  PubMed  Google Scholar 

  • Boyce, D. G., M. R. Lewis & B. Worm, 2011. Is there a decline in marine phytoplankton? Reply. Nature 472(7342): E8–E9.

    Article  CAS  Google Scholar 

  • Brooks, D. A., 2009. Circulation and dispersion in a cancellate coast: the rivers, bays and estuaries of central Maine. Estuarine Coastal and Shelf Science 83(3): 313–325.

    Article  Google Scholar 

  • Chiswell, S. M., 2011. Annual cycles and spring blooms in phytoplankton: don’t abandon Sverdrup completely. Marine Ecology Progress Series 443: 39–50.

    Article  Google Scholar 

  • Doney, S. C., I. Lima, J. K. Moore, K. Lindsay, M. J. Behrenfeld, T. K. Westberry, N. Mahowald, D. M. Glover & T. Takahashi, 2009. Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data. Journal of Marine Systems 76(1–2): 95–112.

    Article  Google Scholar 

  • Edwards, M. & A. J. Richardson, 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430(7002): 881–884.

    Article  CAS  PubMed  Google Scholar 

  • Elliott, M. & A. K. Whitfield, 2011. Challenging paradigms in estuarine ecology and management. Estuarine Coastal and Shelf Science 94: 306–314.

    Article  Google Scholar 

  • Franks, P. J. S. & D. M. Anderson, 1992. Alongshore transport of a toxic phytoplankton bloom in a buoyancy current − Alexandrium tamarense in the Gulf of Maine. Marine Biology 112(1): 153–164.

    Article  Google Scholar 

  • Fussmann, G. F., S. P. Ellner, N. G. Hairston, L. E. Jones, K. W. Shertzer & T. Yoshida, 2005a. Ecological and evolutionary dynamics of experimental plankton communities. Advances in Ecological Research 37: 221–243.

    Article  Google Scholar 

  • Fussmann, G. F., G. Weithoff & T. Yoshida, 2005b. A direct, experimental test of resource vs. consumer dependence. Ecology 86(11): 2924–2930.

    Article  Google Scholar 

  • GoMOOS, 2010. Gulf of Maine ocean observing system. GoMOOS, Portland.

  • Head, E. J. H., W. Melle, P. Pepin, E. Bagoien & C. Broms, 2013. On the ecology of Calanus finmarchicus in the Subarctic North Atlantic: a comparison of population dynamics and environmental conditions in areas of the Labrador Sea-Labrador/Newfoundland Shelf and Norwegian Sea Atlantic and Coastal Waters. Progress in Oceanography 114: 46–63.

    Article  Google Scholar 

  • Holmengen, N. & K. L. Seip, 2009. Cycle lengths and phase portrait characteristics as probes for predator–prey interactions: comparing simulations and observed data. Canadian Journal of Zoology 87(1): 20–30.

    Article  Google Scholar 

  • Hsieh, C. H., S. M. Glaser, A. J. Lucas & G. Sugihara, 2005. Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean. Nature 435(7040): 336–340.

    Article  CAS  PubMed  Google Scholar 

  • Hu, S., D. W. Townsend, C. Chen, G. Cowles, R. C. Beardsley, R. Ji & R. W. Houghton, 2008. Tidal pumping and nutrient fluxes on Georges Bank: a process-oriented modeling study. Journal of Marine Systems 74(1–2): 528–544.

    Article  Google Scholar 

  • Huntsman, S. A. & R. T. Barber, 1977. Primary production off Northwest Africa – relationship to wind and nutrient conditions. Deep-Sea Research 24(1): 25–33.

    Article  CAS  Google Scholar 

  • Janzen, C. D., J. H. Churchill & N. R. Pettigrew, 2005. Observations of exchange between eastern Casco Bay and the western Gulf of Maine. Deep-Sea Research Part II 52(19–21): 2411–2429.

    Article  Google Scholar 

  • Ji, R. B., C. S. Davis, C. S. Chen, D. W. Townsend, D. G. Mountain & R. C. Beardsley, 2007. Influence of ocean freshening on shelf phytoplankton dynamics. Geophysical Research Letters 34(4): L24607.

    Article  Google Scholar 

  • Ji, R. B., C. Stegert & C. S. Davis, 2013. Sensitivity of copepod populations to bottom-up and top-down forcing: a modeling study in the Gulf of Maine region. Journal of Plankton Research 35(1): 66–79.

    Article  Google Scholar 

  • Kahru, M., V. Brotas, M. Manzano-Sarabia & B. G. Mitchell, 2011. Are phytoplankton blooms occurring earlier in the Arctic? Global Change Biology 17(4): 1733–1739.

    Article  Google Scholar 

  • Lewandowska, A. & U. Sommer, 2010. Climate change and the spring bloom: a mesocosm study on the influence of light and temperature on phytoplankton and mesozooplankton. Marine Ecology-Progress Series 405: 101–111.

    Article  CAS  Google Scholar 

  • Llope, M., G. M. Daskalov, T. A. Rouyer, V. Mihneva, K. S. Chan, A. N. Grishin & N. C. Stenseth, 2011. Overfishing of top predators eroded the resilience of the Black Sea system regardless of the climate and anthropogenic conditions. Global Change Biology 17(3): 1251–1265.

    Article  PubMed Central  Google Scholar 

  • Lotka, A. J., 1924. Elements of Physical Biology. Williams and Wilkins, New York.

    Google Scholar 

  • Mackey, M. D., D. J. Mackey, H. W. Higgins & S. W. Wright, 1996. CHEMTAX – a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Marine Ecology-Progress Series 144: 265–283.

    Article  CAS  Google Scholar 

  • Mallin, M. A., L. B. Cahoon & M. J. Durako, 2005. Contrasting food-web support bases for adjoining river-influenced and non-river influenced continental shelf ecosystems. Estuarine Coastal and Shelf Science 62(1–2): 55–62.

    Article  CAS  Google Scholar 

  • Marshall, C. T. & R. H. Peters, 1989. General patterns in the seasonal development of chlorophyll a for temperate lakes. Limnology and Oceanography 34: 856–867.

    Article  CAS  Google Scholar 

  • Merino, J. C., 2003. Lissajous figures and Chebyshev polynomials. The College Mathematics Journal 34(2): 122–127.

    Article  Google Scholar 

  • Moore, T. S. 2008. Dynamics of phytoplankton community compsition in the western Gulf of Maine. Doctor of philosophy, University of New Hampshire, Durham.

  • Mozetic, P., J. France, T. Kogovsek, I. Talaber & A. Malej, 2012. Plankton trends and community changes in a coastal sea (northern Adriatic): bottom-up vs. top-down control in relation to environmental drivers. Estuarine Coastal and Shelf Science 115: 138–148.

    Article  Google Scholar 

  • NERACOOS, 2013. Northeastern regional association of coastal and ocean observing systems. Accessed 12 December 2013. http://www.neracoos.org/.

  • Salisbury, J., M. Green, C. Hunt & J. Campbell, 2008. Coastal acidification by rivers: a threat to shellfish. EOS Transaction, AM Geophysical Union 89(50): 513.

    Article  Google Scholar 

  • Scheffer, M., D. Straile, E. H. van Nes & H. Hosper, 2001. Climatic warming causes regime shifts in lake food webs. Limnology and Oceanography 46(7): 1780–1783.

    Article  Google Scholar 

  • Seip, K. L. & R. McNown, 2007. The timing and accuracy of leading and lagging business cycle indicators: a new approach. International journal of forecasting 22: 277–287.

    Article  Google Scholar 

  • Seip, K. L. & H. Pleym, 2000. Competition and predation in a seasonal world. Verhandlungen des Internationalen Verein Limnologie 27: 823–827.

    Google Scholar 

  • Seip, K. L. & C. S. Reynolds, 1995. Phytoplankton functional attributes along trophic gradient and season. Limnology and Oceanography 40: 589–597.

    Article  Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv fur Hydrobiologie 106: 433–471.

    Google Scholar 

  • Song, H. J., R. B. Ji, C. Stock, K. Kearney & Z. L. Wang, 2011. Interannual variability in phytoplankton blooms and plankton productivity over the Nova Scotian Shelf and in the Gulf of Maine. Marine Ecology Progress Series 426: 105–133.

    Article  Google Scholar 

  • Song, H. J., R. B. Ji, C. Stock & Z. L. Wang, 2010. Phenology of phytoplankton blooms in the Nova Scotian Shelf-Gulf of Maine region: remote sensing and modeling analysis. Journal of Plankton research 32(11): 1485–1499.

    Article  Google Scholar 

  • Sverderup, H. U., 1953. On conditions for the vernal blooming of phytoplankton. Journal du Conseil 18: 287–295.

    Article  Google Scholar 

  • Tomte, O. T., K. L. Seip & N. Christophersen, 1998. Evidence that loss in predictability increases with weakening of (metabolic) links to physical forcing functions in aquatic ecosystems. Oikos 82(2): 325–332.

    Article  Google Scholar 

  • Valesini, F. J., M. Hourston, M. D. Wildsmith, N. J. Coen & I. C. Potter, 2010. New quantitative approaches for classifying and predicting local-scale habitats in estuaries. Estuarine Coastal and Shelf Science 86(4): 645–664.

    Article  CAS  Google Scholar 

  • Wikipedia, 2013. Lissajous curve [http://en.wikipedia.org/wiki/Lissajous_curve].

  • Wilkerson, F. P., A. M. Lassiter, R. C. Dugdale, A. Marchi & V. E. Hogue, 2006. The phytoplankton bloom response to wind events and upwelled nutrients during the CoOP WEST study. Deep-Sea Research Part II 53(25–26): 3023–3048.

    Article  Google Scholar 

  • Wong, K. T. M., J. H. W. Lee & I. J. Hodgkiss, 2007. A simple model for forecast of coastal algal blooms. Estuarine Coastal and Shelf Science 74(1–2): 175–196.

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Janet Campbell at Ocean process Analysis Laboratory, University of New Hampshire, UNH, for inviting me to explore some common ecosystem ideas at the laboratory. I would also like to thank Tim Moore for introducing me to the Gulf of Maine ecosystem, and to Joe Salisbury for bringing me up to date on recent events in the system. Both have read and suggested improvements in the report that this article is based on. Three anonymous reviewers, as well as the Editor, provided very thorough and helpful corrections and suggestions for improvements of the manuscript. Oslo University College for Applied Sciences financed my stay at the University of New Hampshire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut L. Seip.

Additional information

Handling editor: Pierluigi Viaroli

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 562 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seip, K.L. Investigating possible causal relations among physical, chemical and biological variables across regions in the Gulf of Maine. Hydrobiologia 744, 127–143 (2015). https://doi.org/10.1007/s10750-014-2068-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2068-1

Keywords

Navigation