Skip to main content

Advertisement

Log in

Zooplankton-associated and free-living bacteria in the York River, Chesapeake Bay: comparison of seasonal variations and controlling factors

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Zooplankton provide microhabitats for bacteria, but factors which influence zooplankton-associated bacterial abundance are not well known. Through a year-long field study, we measured the concentration of free-living bacteria and bacteria associated with the dominant mesozooplankters Acartia tonsa and Balanus sp. Free-living bacteria peaked in the summer, while zooplankton-associated bacteria peaked in summer and winter. No relationships were found between bacterial abundance per individual and zooplankter width, length, surface area or body volume. Multiple regression analyses indicated that free-living and Acartia-associated bacterial concentrations were explained by temperature, salinity, ammonium, chl a, and all term interactions. Balanus-associated bacterial concentration was explained by ammonium and phosphate. Ammonium significantly influenced all sampled bacterial communities. In laboratory experiments, copepods raised under high ammonium concentration had higher bacterial concentrations than those raised under low ammonium condition. Transplant experiments showed that high ammonium favored loosely attached bacteria, whereas low ammonium selected for firmly attached bacteria, suggesting greater exchange between free-living and zooplankton-associated bacterial communities in nutrient-rich systems. Additional sampling of other zooplankton taxa all showed high bacterial concentrations, supporting the notion that zooplankton function as microbial hotspots and may play an important, yet overlooked, role in marine biogeochemical cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alldredge, A. L. & C. C. Gotschalk, 1990. The relative contribution of marine snow of different origins to biological processes in coastal waters. Continental Shelf Research 10: 41–58.

    Article  Google Scholar 

  • Amon, R. M. W. & R. Benner, 1998. Seasonal patterns of bacterial abundance and production in the Mississippi river plume and their importance for the fate of enhanced primary production. Microbial Ecology 35: 289–300.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, D. R., 2008. Model based inference in the life sciences: a primer on evidence. Springer, New York, NY.

    Book  Google Scholar 

  • Baird, D. & R. E. Ulanowicz, 1989. The seasonal dynamics of the Chesapeake Bay ecosystem. Ecological Monographs 59: 329–364.

    Article  Google Scholar 

  • Calbet, A., 2001. Mesozooplankton grazing impact on primary production: a global comparative analysis in marine ecosystems. Limnology and Oceanography 46: 1824–1830.

    Article  Google Scholar 

  • Carman, K. R., 1994. Stimulation of marine free-living and epibiotic bacterial activity by copepod excretions. FEMS Microbiology Ecology 14: 255–261.

    Article  Google Scholar 

  • Carman, K. R. & F. C. Dobbs, 1997. Epibiotic microorganisms on copepods and other marine crustaceans. Microscopy Research and Technique 37: 116–135.

    Article  PubMed  CAS  Google Scholar 

  • Caro, A., A. Escalas, C. Bouvier, E. Grousset, N. Lautredou-Audouy, C. Roques, M. Charmantier & O. Gros, 2012. Epibiotic bacterial community of Sphaeroma serratum (Crustacea, Isopoda) in relation with molt status. Marine Ecology Progress Series 457: 11–27.

    Article  CAS  Google Scholar 

  • Chen, F., J. Lu, B. J. Binder, Y. Liu & R. E. Hodson, 2001. Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR gold. Applied and Environmental Microbiology 67: 539–545.

    Article  PubMed  CAS  Google Scholar 

  • Condon, R. H., D. K. Steinberg & D. A. Bronk, 2010. Production of dissolved organic matter and inorganic nutrients by gelatinous zooplankton in the York River estuary, Chesapeake Bay. Journal of Plankton Research 32: 153–170.

    Article  CAS  Google Scholar 

  • Conover, R. J. & P. Mayzaud, 1975. Respiration and nitrogen excretion of neritic zooplankton in relation to potential food supply. 10th European Symposium on Marine Biology, Ostend, Belgium 2: 151–163.

  • Cotner, J. B., T. H. Johengen & B. A. Biddanda, 2000. Intense winter heterotrophic production stimulated by benthic resuspension. Limnology and Oceanography 45: 1672–1676.

    Article  Google Scholar 

  • de Angelis, M. A. & C. Lee, 1994. Methane production during zooplankton grazing on marine phytoplankton. Limnology and Oceanography 36: 1298–1308.

    Article  Google Scholar 

  • Durbin, E. G., A. G. Durbin & R. G. Campbell, 1992. Body size and egg production in the marine copepod Acartia hudsonica during a winter-spring diatom bloom in Narragansett Bay. Limnology and Oceanography 37: 342–360.

    Article  Google Scholar 

  • Elliott, D. T. & K. W. Tang, 2011. Spatial and temporal distributions of live and dead copepods in the lower Chesapeake Bay (Virginia, USA). Estuaries and Coasts 34: 1039–1048.

    Article  Google Scholar 

  • Felip, M., M. L. Pace & J. J. Cole, 1996. Regulation of planktonic bacterial growth rates: the effects of temperature and resources. Microbial Ecology 31: 15–28.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, R., H. Ogawa, T. Nagata & I. Koike, 1998. Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Applied and Environmental Microbiology 64: 3352–3358.

    PubMed  CAS  Google Scholar 

  • Gaston, K. J. & J. H. Lawton, 1990. Effects of scale and habitat on the relationship between regional distribution and local abundance. Oikos 58: 329–335.

    Article  Google Scholar 

  • Goosen, N., P. van Rijswijk, J. Kromkamp & J. Peene, 1997. Regulation of annual variation in heterotrophic bacterial production in the Schelde estuary (SW Netherlands). Aquatic Microbial Ecology 12: 223–232.

    Article  Google Scholar 

  • Grossart, H. P. & K. W. Tang, 2010. Communicative & Integrative Biology 3: 1–4. www.aquaticmicrobial.net.

  • Grossart, H. P., C. Dziallas & K. W. Tang, 2009. Bacterial diversity associated with freshwater zooplankton. Environmental Microbiology Reports 1: 50–55.

    Article  PubMed  CAS  Google Scholar 

  • Heidelberg, J. F., K. B. Heidelberg & R. R. Colwell, 2002. Bacteria of the γ-subclass Proteobacteria associated with zooplankton in Chesapeake Bay. Applied and Environmental Microbiology 68: 5498–5507.

    Article  PubMed  CAS  Google Scholar 

  • Hoch, M. P. & D. L. Kirchman, 1993. Seasonal and inter-annual variability in bacterial production and biomass in a temperate estuary. Marine Ecology Progress Series 98: 283–295.

    Article  Google Scholar 

  • Kemp, W., W. Boynton, J. Adolf, D. Boesch, W. Boicourt, G. Brush, J. Cornwell, T. Fisher, P. Glibert, J. Hagy, L. Harding, E. Houde, D. Kimmel, W. Miller, R. Newell, M. Roman, E. Smith & J. Stevenson, 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series 303: 1–29.

    Article  Google Scholar 

  • Kiørboe, T., F. Møhlenberg & K. Hamburger, 1985. Bioenergetics of the planktonic copepod Acartia tonsa: relation between feeding, egg production and respiration, and composition of specific dynamic action. Marine Ecology Progress Series 26: 85–97.

    Article  Google Scholar 

  • Kiørboe, T., E. Saiz & M. Viitasalo, 1996. Prey switching behaviour in the planktonic copepod Acartia tonsa. Marine Ecology Progress Series 143: 65–75.

    Article  Google Scholar 

  • Kirchman, D. L., 1994. The uptake of inorganic nutrients by heterotrophic bacteria. Microbial Ecology 28: 255–271.

    Article  PubMed  CAS  Google Scholar 

  • Kleppel, G. S., 1993. On the diets of calanoid copepods. Marine Ecology Progress Series 99: 183–195.

    Google Scholar 

  • Koroleff, F., 1983. Determination of nutrients. In Grasshoff, K., M. Ehrhardt & K. Kremling (eds), Methods of Seawater Analysis. Verlag Chemie, New York: 125–187.

    Google Scholar 

  • Marty, D. G., 1993. Methanogenic bacteria in seawater. Limnology and Oceanography LIOCAH 38: 452–456.

    Article  Google Scholar 

  • Møller, E. F., 2005. Sloppy feeding in marine copepods: prey-size-dependent production of dissolved organic carbon. Journal of Plankton Research 27: 27–35.

    Article  Google Scholar 

  • Møller, E. F., L. Riemann & M. Søndergaard, 2007. Bacteria associated with copepods: abundance, activity and community composition. Aquatic Microbial Ecology 47: 99–106.

    Article  Google Scholar 

  • Paerl, H., 1980. Attachment of microorganisms to living and detrital surfaces in freshwater systems. In Bitton, G. & K. Marshall (eds), Adsorption of Microorganisms to Surfaces. Wiley, New York, NY: 375–402.

    Google Scholar 

  • Parsons, T. R., Y. Maita & C. M. Lalli, 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, New York.

    Google Scholar 

  • Peierls, B. & H. Paerl, 2010. Temperature, organic matter, and the control of bacterioplankton in the Neuse River and Pamlico Sound estuarine system. Aquatic Microbial Ecology 60: 139–149.

    Article  Google Scholar 

  • Pomeroy, L. & W. Wiebe, 2001. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquatic Microbial Ecology 23: 187–204.

    Article  Google Scholar 

  • Pomeroy, L., W. Wiebe, D. Deibel, R. Thompson, G. Rowe & J. D. Pakulski, 1991. Bacterial responses to temperature and substrate concentration during the Newfoundland spring bloom. Marine Ecology Progress Series 75: 143–159.

    Article  Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.

    Article  Google Scholar 

  • Proctor, L., 1997. Nitrogen-fixing, photosynthetic, anaerobic bacteria associated with pelagic copepods. Aquatic Microbial Ecology 12: 105–113.

    Article  Google Scholar 

  • Qiu, J., L. Gosselin & P. Qian, 1997. Effects of short-term variation in food availability on larval development in the barnacle Balanus amphitrite amphitrite. Marine Ecology Progress Series 161: 83–91.

    Article  Google Scholar 

  • Raymond, P. A. & J. E. Bauer, 2001. DOC cycling in a temperate estuary: a mass balance approach using natural 14C and 13C isotopes. Limnology and Oceanography 46: 655–667.

    Article  CAS  Google Scholar 

  • Revilla, M., A. Iriarte, I. Madariaga & E. Orive, 2000. Bacterial and phytoplankton dynamics along a trophic gradient in a shallow temperate estuary. Estuarine, Coastal and Shelf Science 50: 297–313.

    Article  Google Scholar 

  • Schultz, G., E. White & H. Ducklow, 2003. Bacterioplankton dynamics in the York River estuary: primary influence of temperature and freshwater inputs. Aquatic Microbial Ecology 30: 135–148.

    Article  Google Scholar 

  • Shiah, F. & H. W. Ducklow, 1994. Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth rate in Chesapeake Bay. Limnology and Oceanography 39: 1243–1258.

    Article  Google Scholar 

  • Simon, M., H. Grossart, B. Schweitzer & H. Ploug, 2002. Microbial ecology of organic aggregates in aquatic ecosystems. Aquatic Microbial Ecology 28: 175–211.

    Article  Google Scholar 

  • Steinberg, D. K. & R. H. Condon, 2009. Zooplankton of the York River. Journal of Coastal Research 57: 66–79.

    Google Scholar 

  • Tang, K. W., 2005. Copepods as microbial hotspots in the ocean: effects of host feeding activities on attached bacteria. Aquatic Microbial Ecology 38: 31–40.

    Article  Google Scholar 

  • Tang, K. W., V. Turk & H. P. Grossart, 2010. Crustacean zooplankton as microhabitats for bacteria. Aquatic Microbial Ecology 61: 261–277.

    Article  Google Scholar 

  • Tang, K. W., R. N. Glud, A. Glud, S. Rysgaard & T. G. Nielsen, 2011. Copepod guts as biogeochemical hotspots in the sea: evidence from microelectrode profiling of Calanus spp. Limnology and Oceanography 56: 666–672.

    Article  CAS  Google Scholar 

  • Titelman, J., L. Riemann, K. Holmfeldt & T. Nilsen, 2008. Copepod feeding stimulates bacterioplankton activities in a low phosphorus system. Aquatic Biology 2: 131–141.

    Article  Google Scholar 

  • Zettler, E. R., T. J. Mincer & L. A. Amaral-Zettler, 2013. Life in the “Plastisphere”: microbial communities on plastic marine debris. Environmental Science & Technology 47: 7137–7146.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Q. Roberts and S. Baer for assistance in nutrient analysis and F. C. Dobbs for helpful suggestions and review of the manuscript. The manuscript was improved through helpful suggestions from two anonymous reviewers. This research was funded by the National Science Foundation OCE-0814558. SLB received additional support from the National Science Foundation GK-12 (Division of Graduate Education 0840804). This is contribution number 3320 of the Virginia Institute of Marine Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha L. Bickel.

Additional information

Handling editor: Stefano Amalfitano

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bickel, S.L., Tang, K.W. Zooplankton-associated and free-living bacteria in the York River, Chesapeake Bay: comparison of seasonal variations and controlling factors. Hydrobiologia 722, 305–318 (2014). https://doi.org/10.1007/s10750-013-1725-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1725-0

Keywords

Navigation