Skip to main content

Advertisement

Log in

Sex-specific plasticity in body phosphorus content of Hyalella amphipods

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Understanding the evolution of sexually dimorphic traits requires knowledge of the genetic and environmental sources of variation. However, we know surprisingly little about how the sexes differ in their responses to environmental nutrient supply. Here, we investigated how phosphorus (P) availability, a key metric of eutrophication, affects body composition in each sex of two Hyalella amphipod species. We also examined whether differences in food preference and acquisition are responsible for observed variation in body P. We discovered environmentally-driven changes in body P that were dependent on both species and sex. In both species, males contained less P when raised in low-P laboratory conditions compared to high-P field environments, while females exhibited no significant differences. Importantly, this difference was greater in the species that is known to have larger sexual traits and higher growth rates. Variation in P content was not due to differences in acquisition of P because both sexes preferred high-P food and consumed it at a similar rate. Our study illuminates potentially important sex- and species-specific evolutionary consequences of rapid alterations to P availability due to cultural eutrophication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersson, M. B., 1994. Sexual Selection. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • APHA, 1992. Standard Methods for the Examination of Water and Wastewater. APHA, Washington, DC.

    Google Scholar 

  • Beck, C. A., S. J. Iverson, W. D. Bowen & W. Blanchard, 2007. Sex differences in grey seal diet reflect seasonal variation in foraging behaviour and reproductive expenditure: evidence from quantitative fatty acid signature analysis. The Journal of Animal Ecology 76: 490–502.

    Article  PubMed  Google Scholar 

  • Bertram, S. M., J. D. Schade & J. J. Elser, 2006. Signalling and phosphorus: correlations between mate signalling effort and body elemental composition in crickets. Animal Behaviour 72: 899–907.

    Article  Google Scholar 

  • Bertram, S. M., E. M. Whattam, L. Visanuvimol, R. Bennett & C. Lauzon, 2009. Phosphorus availability influences cricket mate attraction displays. Animal Behaviour 77: 525–530.

    Article  Google Scholar 

  • Boersma, M. & J. J. Elser, 2006. Too much of a good thing: on stoichiometrically balanced diets and maximal growth. Ecology 87: 1325–1330.

    Article  PubMed  Google Scholar 

  • Bonduriansky, R., 2007. Sexual selection and allometry: a critical reappraisal of the evidence and ideas. Evolution 61: 838–849.

    Article  PubMed  Google Scholar 

  • Bousfield, E. L., 1958. Freshwater amphipod crustaceans of glaciated North America. Canadian Field Naturalist 72: 55–113.

    Google Scholar 

  • Brown, T., 2000. Popular Patents: America’s First Inventions from the Airplane to the Zipper. Scarecrow Press, Lanham, MD: 86 pp.

    Google Scholar 

  • Butkas, K. J. & M. L. Ostrofsky, 2006. The status of unionid and dreissenid mussels in northwestern Pennsylvania inland lakes. The Nautilus 120: 106–111.

    Google Scholar 

  • Clarke, J., B. Manly, K. Kerry, H. Gardner & E. Franchi, 1998. Sex differences in Adelie penguin foraging strategies. Polar Biology 20: 248–258.

    Article  Google Scholar 

  • Cothran, R. D. & P. D. Jeyasingh, 2010. Condition dependence of a sexually selected trait in a crustacean species complex: importance of the ecological context. Evolution 64: 2535–2546.

    Article  PubMed  Google Scholar 

  • Cothran, R. D., A. R. Stiff, P. D. Jeyasingh & R. A. Relyea, 2012. Eutrophication and predation risk interact to affect sexual trait expression and mating success. Evolution 66: 708–719.

    Article  PubMed  Google Scholar 

  • Elser, J. J., D. R. Dobberfuhl & N. A. MacKay, 1996. Organism size, life history, and N:P stoichiometry. BioScience 46: 674–684.

    Article  Google Scholar 

  • Elser, J. J., W. F. Fagan, R. F. Denno, D. R. Dobberfuhl, A. Folarin, A. Huberty, S. Interlandi, S. S. Kilham, E. McCauley, K. L. Schulz, E. H. Siemann & R. W. Sterner, 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature 408: 578–580.

    Article  CAS  PubMed  Google Scholar 

  • Elser, J. J., K. Acharya, M. Kyle, J. Cotner, W. Makino, T. Markow, T. Watts, S. Hobbie, W. Fagan, J. Schade, J. Hood & R. W. Sterner, 2003. Growth rate-stoichiometry couplings in diverse biota. Ecology Letters 6: 936–943.

    Article  Google Scholar 

  • Emlen, D. J. & H. F. Nijhout, 2000. The development and evolution of exaggerated morphologies in insects. Annual Review of Entomology 45: 661–708.

    Article  CAS  PubMed  Google Scholar 

  • Fagan, W. F., E. Siemann, C. Mitter, R. F. Denno, A. F. Huberty, H. A. Woods & J. J. Elser, 2002. Nitrogen in insects: implications for trophic complexity and species diversification. The American Naturalist 160: 784–802.

    Article  PubMed  Google Scholar 

  • Frost, P. C., J. P. Benstead, W. F. Cross, H. Hillebrand, J. H. Larson, M. A. Xenopoulos & T. Yoshida, 2006. Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecology Letters 9: 774–779.

    Article  PubMed  Google Scholar 

  • Gillooly, J. F., A. P. Allen, J. H. Brown, J. J. Elser, C. Martinez del Rio, V. M. Savage, G. B. West, W. H. Woodruff & H. A. Woods, 2005. The metabolic basis of whole-organism RNA and phosphorus content. Proceedings of the National Academy of Sciences of the United States of America 102: 11923–11927.

    Article  CAS  PubMed  Google Scholar 

  • Hargrave, B. T., 1970. The utilization of benthic microflora by Hyalella azteca (Amphipoda). The Journal of Animal Ecology 39: 427–437.

    Article  Google Scholar 

  • Hessen, D. O., P. J. Faerovig & T. Andersen, 2002. Light, nutrients and P:C ratios in algae: grazer performance related to food quality and quantity. Ecology 83: 1886–1898.

    Article  Google Scholar 

  • Jaenike, J. & T. Markow, 2003. Comparative elemental stoichiometry of ecologically diverse Drosophila. Functional Ecology 17: 115–120.

    Article  Google Scholar 

  • Jeyasingh, P. D. & L. J. Weider, 2005. Phosphorus availability mediates plasticity in life-history traits and predator-prey interactions in Daphnia. Ecology Letters 8: 1021–1028.

    Article  Google Scholar 

  • Jeyasingh, P. D. & L. J. Weider, 2007. Fundamental links between genes and elements: evolutionary implications of ecological stoichiometry. Molecular Ecology 16: 4649–4661.

    Article  CAS  PubMed  Google Scholar 

  • Jeyasingh, P. D., L. J. Weider & R. W. Sterner, 2009. Genetically-based trade-offs in response to stoichiometric food quality influence competition in a keystone aquatic herbivore. Ecology Letters 12: 1229–1237.

    Article  PubMed  Google Scholar 

  • Jeyasingh, P. D., A. Ragavendran, S. Paland, J. A. Lopez, R. W. Sterner & J. K. Colbourne, 2011. How do consumers deal with stoichiometric constraints? Lessons from functional genomics using Daphnia pulex. Molecular Ecology 20: 2341–2352.

    Article  PubMed  Google Scholar 

  • Kilham, S., D. Kreeger, S. Lynn, & C. Goulden, 1998. COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377: 147–159.

    Google Scholar 

  • Lincoln, G. A., 1992. Biology of antlers. Journal of Zoology 226: 517–528.

    Article  Google Scholar 

  • Maklakov, A. A., S. J. Simpson, F. Zajitschek, M. D. Hall, J. Dessmann, F. Clissold, D. Raubenheimer, R. Bonduriansky & R. C. Brooks, 2008. Sex-specific fitness effects of nutrient intake on reproduction and lifespan. Current Biology 18: 1062–1066.

    Article  CAS  PubMed  Google Scholar 

  • Markow, T. A., D. R. Dobberfuhl, C. M. Breitmeyer, J. J. Elser & E. Pfeiler, 1999. Elemental stoichiometry of Drosophila and their hosts. Functional Ecology 13: 78–84.

    Article  Google Scholar 

  • Markow, T. A., A. Coppola & T. D. Watts, 2001. How Drosophila males make eggs: it is elemental. Proceedings of the Royal Society of London Series B: Biological Sciences 268: 1527–1532.

    Article  CAS  PubMed  Google Scholar 

  • Morehouse, N. I., T. Nakazawa, C. M. Booher, P. D. Jeyasingh & M. D. Hall, 2010. Sex in a material world: why the study of sexual reproduction and sex-specific traits should become more nutritionally-explicit. Oikos 119: 766–778.

    Article  Google Scholar 

  • Oklahoma Water Resources Board, 2005. Justification for adding nutrient limited watershed designations to water bodies in Appendix A. Oklahoma Water Resources Board, Oklahoma.

  • Raymond, J. & J. Himmelman, 2004. Sex differences in biochemical composition, energy content and allocation to reproductive effort in the brooding sea star Leptasterias polaris. Marine Ecology Progress 283: 179–190.

    Article  CAS  Google Scholar 

  • Ruckstuhl, K., 1998. Foraging behaviour and sexual segregation in bighorn sheep. Animal Behaviour 56: 99–106.

    Article  PubMed  Google Scholar 

  • Schatz, G. S. & E. McCauley, 2007. Foraging behavior by Daphnia in stoichiometric gradients of food quality. Oecologia 153: 1021–1030.

    Article  PubMed  Google Scholar 

  • Schindler, D. W., R. E. Hecky, D. L. Findlay, M. P. Stainton, B. R. Parker, M. J. Paterson, K. G. Beaty, M. Lyng & S. E. M. Kasian, 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences of the United States of America 105: 11254–11258.

    Article  CAS  PubMed  Google Scholar 

  • Shine, R., 1989. Ecological causes for the evolution of sexual dimorphism: a review of the evidence. Quarterly Review of Biology 64: 419–461.

    Article  CAS  PubMed  Google Scholar 

  • Smil, V., 1999. Detonator of the population explosion. Nature 400: 415.

    Article  CAS  Google Scholar 

  • Smil, V., 2000. Phosphorus in the environment: natural flows and human interferences. Annual Review of Energy and the Environment 25: 53–88.

    Article  Google Scholar 

  • Sterner, R. W. & J. J. Elser, 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton.

    Google Scholar 

  • Sterner, R. W., T. Andersen, J. J. Elser, D. O. Hessen, J. Hood, E. McCauley & J. Urabe, 2008. Scale-dependent carbon:nitrogen:phosphorus seston stoichiometry in marine and freshwaters. Limnology and Oceanography 53: 1169–1180.

    Article  CAS  Google Scholar 

  • Tarnopolsky, M. A. & W. H. Saris, 2001. Evaluation of gender differences in physiology: an introduction. Current Opinion in Clinical Nutrition and Metabolic Care 4: 489–492.

    Article  CAS  PubMed  Google Scholar 

  • Theodorou, M. E. & W. C. Plaxton, 1993. Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiology 101: 339–344.

    CAS  PubMed  Google Scholar 

  • Theodorou, M. E., I. R. Elrifi, D. H. Turpin & W. C. Plaxton, 1991. Effects of phosphorus limitation on respiratory metabolism in the green alga Selenastrum minutum. Plant Physiology 95: 1089–1095.

    Article  CAS  PubMed  Google Scholar 

  • Tillberg, J. & J. R. Rowley, 1989. Physiological and structural effects of phosphorus starvation on the unicellular green alga Scenedesmus. Physiologia Plantarum 75: 315–324.

    Article  CAS  Google Scholar 

  • Visanuvimol, L. & S. M. Bertram, 2010. Dietary phosphorus availability influences female cricket lifetime reproductive effort. Ecological Entomology 35: 386–395.

    Article  Google Scholar 

  • Wellborn, G. A., 1994a. Size-biased predation and prey life histories: a comparative study of freshwater amphipod populations. Ecology 75: 2104–2117.

    Article  Google Scholar 

  • Wellborn, G. A., 1994b. The mechanistic basis of body size differences between two Hyalella (Amphipoda) species. Journal of Freshwater Ecology 9: 159–168.

    Article  Google Scholar 

  • Wellborn, G. A., 1995. Determinants of reproductive success in freshwater amphipod species that experience different mortality regimes. Animal Behaviour 50: 353–363.

    Article  Google Scholar 

  • Wellborn, G. A., 2000. Selection on a sexually dimorphic trait in ecotypes within the Hyalella azteca species complex (Amphipoda: Hyalellidae). American Midland Naturalist 143: 212–225.

    Article  Google Scholar 

  • Wellborn, G. A., 2002. Trade-off between competitive ability and antipredator adaptation in a freshwater amphipod species complex. Ecology 83: 129–136.

    Article  Google Scholar 

  • Wellborn, G. A. & S. E. Bartholf, 2005. Ecological context and the importance of body and gnathopod size for pairing success in two amphipod ecomorphs. Oecologia 143: 308–316.

    Article  PubMed  Google Scholar 

  • Wellborn, G. A. & R. E. Broughton, 2008. Diversification on an ecologically constrained adaptive landscape. Molecular Ecology 17: 2927–2936.

    Article  CAS  PubMed  Google Scholar 

  • Wellborn, G. A. & R. D. Cothran, 2004. Phenotypic similarity and differentiation among sympatric cryptic species in a freshwater amphipod species complex. Freshwater Biology 49: 1–13.

    Article  Google Scholar 

  • Wellborn, G., a., D. K. Skelly & E. E. Werner, 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics 27: 337–363.

    Article  Google Scholar 

  • Wellborn, G. A., R. Cothran & S. Bartholf, 2005. Life history and allozyme diversification in regional ecomorphs of the Hyalella azteca (Crustacea: Amphipoda) species complex. Biological Journal of the Linnean Society 84: 161–175.

    Article  Google Scholar 

  • Westheimer, F. H., 1987. Why nature chose phosphates. Science 235: 1173–1178.

    Article  CAS  PubMed  Google Scholar 

  • Witt, J. D., D. L. Threloff & P. D. Hebert, 2006. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Molecular Ecology 15: 3073–3082.

    Article  CAS  PubMed  Google Scholar 

  • Woods, H., W. Fagan, J. Elser & J. Harrison, 2004. Allometric and phylogenetic variation in insect phosphorus content. Functional Ecology 18: 103–109.

    Article  Google Scholar 

Download references

Acknowledgments

We thank A. Buzzard and A. Ridlen for their assistance in this research. We would also like to thank several anonymous reviewers for their constructive comments on earlier versions of the manuscript. NSF Grant #0924401 to PDJ supported elemental analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared M. Goos.

Additional information

Handling editor: B. Oertli

Rickey D. Cothran and Punidan D. Jeyasingh are joint senior authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goos, J.M., French, B.J., Relyea, R.A. et al. Sex-specific plasticity in body phosphorus content of Hyalella amphipods. Hydrobiologia 722, 93–102 (2014). https://doi.org/10.1007/s10750-013-1682-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1682-7

Keywords

Navigation