Skip to main content

Advertisement

Log in

Inherent optical properties of suspended particulates in four temperate lakes: application of in situ spectroscopy

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Instrumentation measuring hyperspectral particle attenuation and absorption was used to assess particle concentration and size, chlorophyll, and spectral characteristics as a function of depth in four temperate lakes of different trophy. Partitioning the absorption coefficient permitted us to analyze properties of phytoplankton absorption as a function of ambient illumination and hydrographic conditions. Stratification was found to be a controlling factor in the size distribution and concentration of particles. Bloom cycles (chlorophyll > 10 mg m−3) were observed to evolve over several weeks but on occasion did change rapidly. Total chlorophyll concentration revealed the majority of the lakes did not follow the typical seasonal succession of biomass associated with temperate waters. Particle and chlorophyll concentration maxima did not always coincide, cautioning the use of chlorophyll a as a surrogate for algal biomass. Phytoplankton near the base of the euphotic zone, including a deep chlorophyll maximum in an oligotrophic system, were found to exhibit significant chromatic adaptation. Unique absorption peaks identified the ubiquitous presence of cyanobacteria in all four lakes. Finally, particle resuspension and possible nepheloid layers were observed in the two smallest lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Babin, M., D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky & N. Hoepffner, 2003. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. Journal of Geophysical Research 108(C7) 3211.1029/2001JC000882.

  • Babin, M., C. S. Roesler & J. J. Cullen (eds), 2008. Real-time coastal observing systems for marine ecosystem dynamics and harmful algal blooms: theory, instrumentation and modeling. UNESCO Publishing, Paris.

    Google Scholar 

  • Belzile, C., W. Vincent, C. Howard-Williams, I. Hawes, M. R. James, M. Kumagai, & C. S. Roesler, 2004. Relationships between spectral optical properties and optically active substances in a clear oligotrophic lake. Water Resources Research 40: W12512.1029/2004WR003090.

  • Bloomfield, J. A., 1978. Lakes of New York State, Vol. I & II. Academic Press, New York.

    Google Scholar 

  • Blough, N. V. & R. Del Vecchio, 2002. Chromophoric dissolved organic matter (DOM) in coastal environment. In Hansell, D. A. & C. A. Carlson (eds), Biogeochemistry of marine dissolved matter. Academic Press, Boston.

    Google Scholar 

  • Boss, E. & J. R. V. Zaneveld, 2003. The effect of bottom substrate on inherent optical properties: evidence of biogeochemical processes. Limnology and Oceanography 48: 346–354.

    Article  Google Scholar 

  • Boss, E., W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang & T. D. Dickey, 2001a. Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf. Journal of Geophysical Research 106: 9509–9516.

    Article  Google Scholar 

  • Boss, E. S., M. S. Twardowski & S. Herring, 2001b. Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution. Applied Optics 40: 4885–4893.

    Article  PubMed  CAS  Google Scholar 

  • Boss, E., W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev & F. Baratange, 2004. Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution. Journal of Geophysical Research 109: C0101410.1029/2002JC001514.

  • Boss, E. S., R. W. Collier, G. L. Larson, K. Fennel & W. S. Pegau, 2007. Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR. Hydrobiologia 574: 149–159.

    Article  CAS  Google Scholar 

  • Boyer, G. L., 2007. Cyanobacterial toxins in New York and the lower Great Lakes ecosystems. In Hudnell, H. K. (ed.), Cyanobacterial Harmful Algal Blooms: State-of-the-Science and Research Needs. Springer, New York.

    Google Scholar 

  • Bricaud, A. & D. Stramski, 1990. Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea. Limnology and Oceanography 35: 562–582.

    Article  CAS  Google Scholar 

  • Bricaud, A., M. Babin, A. Morel & H. Claustre, 1995. Variability in the chlorophyll-specific absorption of natural phytoplankton: analysis and parameterization. Journal of Geophysical Research 100: 13321–13332.

    Article  Google Scholar 

  • Carder, K. L., R. G. Stewart, G. R. Harvey & P. B. Ortner, 1989. Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll. Limnology and Oceanography 34: 68–81.

    Article  CAS  Google Scholar 

  • Ciotti, A. M., M. R. Lewis & J. J. Cullen, 2002. Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient. Limnology and Oceanography 47: 404–417.

    Article  CAS  Google Scholar 

  • Cleveland, J. S. & A. Weidemann, 1993. Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters. Limnology and Oceanography 38: 1321–1327.

    Article  CAS  Google Scholar 

  • Coble, P. G., 2007. Marine optical biogeochemistry: the chemistry of ocean color. Chemical Reviews 107: 402–418.

    Article  PubMed  CAS  Google Scholar 

  • Cullen, J. J., 1982. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Canadian Journal of Fisheries and Aquatic Sciences 39: 791–803.

    Article  CAS  Google Scholar 

  • Cullen, J. J. & J. G. MacIntyre, 1998. Behavior, physiology and the niche of depth-regulating phytoplankton. In Anderson, D. M., A. D. Cembella & G. M. Hallegraeff (eds), Physiological Ecology of Harmful Algal Blooms, NATO ASI Series Vol. G41.

  • Davis, R. F., C. C. Moore, J. R. V. Zaneveld & J. M. Napp, 1997. Reducing the effects of fouling on chlorophyll estimates derived from long-term deployments of optical instruments. Journal of Geophysical Research 102: 5851–5855.

    Article  CAS  Google Scholar 

  • Davis-Colley, R. J., 1988. Mixing depths in New Zealand lakes. New Zealand Journal of Marine and Freshwater Research 22: 517–527.

    Article  Google Scholar 

  • Dickey, T., M. Lewis & G. Chang, 2006. Optical oceanography: recent advances and future directions using global remote sensing and in situ observations. Reviews of Geophysics 44: RG1001.1029/2003RG000148.

  • Diehl, S., S. Berger, R. Ptacnik & A. Wild, 2002. Phytoplankton, light, and nutrients in a gradient of mixing depths: field experiments. Ecology 83: 399–411.

    Article  Google Scholar 

  • Duysens, L. N. M., 1956. The flattening of the absorption spectrum of suspensions as compared to solutions. Biochimica et Biophysica Acta 19: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Edson, J. J. & R. C. Jones, 1988. Spatial, temporal, and storm runoff-related variations in phytoplankton community structure in a small, suburban reservoir. Hydrobiologia 169: 353–362.

    Article  Google Scholar 

  • Eisma, D., 1993. Suspended matter in the aquatic environment. Springer, New York.

    Book  Google Scholar 

  • Estapa, M. L., E. Boss, L. M. Mayer & C. S. Roesler, 2012. Role of iron and organic carbon in mass-specific light absorption by particulate matter from Louisiana coastal waters. Limnology and Oceanography 57: 97–112.

    Article  CAS  Google Scholar 

  • Falkowski, P. G. & J. A. Raven, 2007. Aquatic Photosynthesis, 2nd ed. Princeton University Press, Princeton.

    Google Scholar 

  • Felip, M. & J. Catalan, 2000. The relationship between phytoplankton biovolume and chlorophyll in a deep oligotrophic lake: decoupling in their spatial and temporal maxima. Journal of Phytoplankton Research 22: 91–105.

    Article  Google Scholar 

  • Fennel, K. & E. Boss, 2003. Subsurface maxima of phytoplankton and chlorophyll: steady-state solutions from a simple model. Limnology and Oceanography 48: 1521–1534.

    Article  Google Scholar 

  • Ficek, D., S. Kaczmarek, J. Ston-Egiert, B. Wozniak, R. Majchrowski & J. Dera, 2004. Spectra of light absorption by phytoplankton pigments in the Baltic; conclusions to drawn from a Gaussian analysis of empirical data. Oceanologia 46: 533–555.

    Google Scholar 

  • Fogg, G. E., 1991. The phytoplanktonic ways of life. New Phytologist 188: 191–232.

    Article  Google Scholar 

  • Gardner, W. D., I. D. Walsh & M. J. Richardson, 1993. Biophysical forcing on particle production and distribution during a spring bloom in the North Atlantic. Deep Sea Research II 40: 171–195.

    Article  Google Scholar 

  • Glazer, A. N., 1977. Structure and molecular organization of the photosynthetic assessor pigments of cyanobacteria and red algae. Molecular & Cellular Biochemistry 18: 125–140.

    Article  CAS  Google Scholar 

  • Hill, P. S., E. Boss, J. P. Newgard, B. A. Law & T. G. Milligan, 2011. Observations of the sensitivity of beam attenuation to particle size in a coastal bottom boundary layer. Journal of Geophysical Research 116: C02023.1029/2010JC006539.

  • Hoepffner, N. & S. Sathyendranath, 1991. Effect of pigment composition on absorption properties of phytoplankton. Marine Ecology Progress Series 73: 11–23.

    Article  CAS  Google Scholar 

  • Hoepffner, N. & S. Sathyendranath, 1993. Determine of the major groups of phytoplankton pigments from absorption spectra of total particulate matter. Journal of Geophysical Research 98(C12): 22789–22803.

    Article  CAS  Google Scholar 

  • Holdren, C., W. Jones & Taggart, 2001. Managing lakes and reservoirs. North American Lake Management Society and Terrene Institute, in cooperation with Office of Water, Assessment and Watershed Protection Division, US Environmental Protection Agency, Madison, WI.

  • Iqbal, M., 1983. An introduction to Solar Radiation. Academic Press, New York.

    Google Scholar 

  • Johnsen, G. & E. Sakshaug, 2007. Biooptical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulse-amplitude-modulated and fast-repetition-rate fluorometry. Journal of Phycology 43: 1236–1251.

    Article  CAS  Google Scholar 

  • Kalenak, D. S., 2011. An optical study of four regional lakes in Upstate New York. PhD Thesis. State University of New York, College of Environmental Science and Forestry, New York.

  • Kalff, J., 2002. Limnology. Prentice Hall, Upper Saddle River.

    Google Scholar 

  • Kirk, J. T. O., 2010. Light & Photosynthesis in Aquatic Ecosystems, 3rd ed. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Konopka, A. E., A. R. Klemer, A. E. Walsby & B. W. Ibelings, 1993. Effects of macronutrients upon buoyancy regulation by metalimnetic Oscillatoria agardhii in Deming Lake, Minnesota. Journal of Plankton Research 15: 1019–1034.

    Article  CAS  Google Scholar 

  • Lampert, W. & U. Sommer, 2007. Limnoecology: The Ecology of Lakes and Streams. Oxford University Press, New York.

    Google Scholar 

  • Lee, Z., A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, & C. Davis, 2007. Euphotic zone depth: its derivation and implication to ocean-color remote sensing. Journal of Geophysical Research 122: C03009.1029/2006JC003802.

  • Marshall, C. T. & R. H. Peters, 1989. General patterns in the seasonal development of chlorophyll a for temperate lakes. Limnology and Oceanography 34: 856–867.

    Article  CAS  Google Scholar 

  • Marshall, C. T., A. Morin & R. H. Peters, 1988. Estimates of mean chlorophyll-a concentration: precision, accuracy, and sampling design. Journal of the American Water Resources Association 24: 1027–1034.

    Article  CAS  Google Scholar 

  • Meffert, M.-E. & J. Overbeck, 1985. Dynamics of chlorophyll and photosynthesis in natural phytoplankton associations: I. Seasonal and annual cycles of chlorophyll and phaeopigments, in relation to euphotic depth and their vertical distribution in small North German lakes. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 104: 219–234.

    CAS  Google Scholar 

  • Millie, D. F., O. M. Schofield, G. J. Kirkpatrick, G. Johnsen, P. A. Tester & B. T. Vinyard, 1997. Detection of harmful algal blooms using photopigments and absorption signatures: a case study of the Florida red tide dinoflagellate, Gymnodinium Breve. Limnology and Oceanography 42: 1240–1251.

    Article  CAS  Google Scholar 

  • Mitchell, B. G., M. Kahru, J. Wieland & M. Stramska, 2003. Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete samples. In Mueller, J. L., G. S. Fargion & C. R. McClain (eds), Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Vol. 4. NASA/TM-2003-21621, NASA Goddard Space Flight Center, Greenbelt, MD.

  • Moisan, J. R., T. A. H. Moisan & M. A. Linkswiler, 2011. An inverse modeling approach to estimating phytoplankton pigment concentrations from phytoplankton absorption spectra. Journal of Geophysical Research 116: C09018.1029/2010JC006786.

  • Moore, C., A. Bernard, P. Fietzek, M. R. Lewis, H. M. Sosik, S. White & O. Zielinski, 2008. Optical tools for ocean monitoring and research. Ocean Science Discussions 5: 659–717.

    Article  Google Scholar 

  • Morel, A., 1974. Optical properties of pure water and pure sea water. In Jerlov, N. G. & E. S. Nielsen (eds), Optical Aspects of Oceanography. Academic Press, New York.

    Google Scholar 

  • Morel, A., 1978. Available, usable, and stored radiant energy in relation to marine photosynthesis. Deep Sea Research 25: 673–688.

    Article  CAS  Google Scholar 

  • Mueller, J. L., 2003. In-water radiometric profile measurements and data analysis protocols. In Mueller, J. L., G. S. Fargion & C. R. McClain (eds), Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Vol. 3. NASA/TM-2003-21621, NASA Goddard Space Flight Center, Greenbelt, MD.

  • Nelson, J. R. & C. Y. Robertson, 1993. Detrital spectral absorption: laboratory studies of visible light effects on phytodetritus absorption, bacterial spectral signal, and comparison with field measurements. Journal of Marine Research 51: 181–207.

    Article  Google Scholar 

  • Nõges, P., R. Adrian, O. Anneville, L. Arvola, T. Blenckner, D. G. George, T. Jankowski, M. Järvinen, S. C. Maberly, J. Padisák, D. Straile, K. Teubner & G. Weyhenmeyer, 2010. The impact of variations in the climate on seasonal dynamics of phytoplankton. In George, D. G. (ed.), The Impact of Climate Change on European Lakes. Aquatic Ecology Series 4. Springer, Dordrecht: 253–274.

  • O’Donnell, D. M., S. W. Effler, C. M. Strait & G. A. Leshkevich, 2010. Optical characterizations and pursuit of optical closure for the western basin of Lake Erie through in situ measurements. Journal of Great Lakes Research 36: 736–746.

    Article  Google Scholar 

  • Oubelkheir, K., H. Claustre, A. Bricaud & M. Babin, 2007. Partitioning total spectral absorption in phytoplankton and colored detrital material contributions. Limnology and Oceanography: Methods 5: 384–395.

    Article  Google Scholar 

  • Perkins, M., S. W. Effler, C. Strait & L. Zhang, 2009. Light absorbing components in the Finger Lakes of New York. Fundamental and Applied Limnology 173: 305–320.

    CAS  Google Scholar 

  • Pope, R. M. & E. S. Fry, 1997. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Applied Optics 36: 8710–8723.

    Article  PubMed  CAS  Google Scholar 

  • Preisendorfer, R. W., 1976. Hydrologic Optics, Volume V. Properties. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Honolulu.

    Google Scholar 

  • Prezelin, B. B. & B. A. Boczar, 1986. Molecular basis of cell absorption and fluorescence in phytoplankton: potential applications to studies in optical oceanography. In Round, F. & D. Chapman (eds), Progress in Phycological Research. Biopress Ltd., Bristol.

    Google Scholar 

  • Ptacnik, R., S. Diehl & S. Berger, 2003. Performance of sinking and nonsinking phytoplankton taxa in a gradient of mixing depths. Limnology and Oceanography 48: 1903–1912.

    Article  Google Scholar 

  • Reynolds, C. S., 2002. On the interannual variability in phytoplankton production in freshwater. In Williams, P. J. le B., D. N. Thomas & C. S. Reynolds (eds), Phytoplankton Productivity: Carbon Assimilation in Marine and Freshwater Ecosystems. Blackwell Science, Oxford.

  • Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Roesler, C. S., 1998. Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique. Limnology and Oceanography 43: 1649–1660.

    Article  CAS  Google Scholar 

  • Roesler, C. S., M. J. Perry & K. L. Carder, 1989. Modeling in situ phytoplankton absorption from total absorption spectra in productive inland waters. Limnology and Oceanography 34: 1510–1523.

    Article  CAS  Google Scholar 

  • Rowan, K. S., 1989. Photosynthetic Pigments of Algae. Cambridge University Press, Cambridge.

    Google Scholar 

  • Savitzky, A. & M. J. Golay, 1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry 36: 1627–1639.

    Article  CAS  Google Scholar 

  • Slade, W. H., E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler & T. K. Westberry, 2010. Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation. Journal of Atmospheric Oceanic Technology 27: 1733–1746.

    Article  Google Scholar 

  • Staehr, P. A., J. M. Testa, W. M. Kemp, J. J. Cole, K. Sand-Jensen & S. V. Smith, 2012. The metabolism of aquatic ecosystems: history, applications, and future challenges. Aquatic Sciences 74: 15–29.

    Article  Google Scholar 

  • Sukenik, A., T. Zohary & J. Padisak, 2010. Cyanoprokaryota and other prokaryota algae. In Likens, G. E. (ed.), Plankton of Inland Waters (A Derivative of Encyclopedia of Inland Waters). Academic Press, New York.

    Google Scholar 

  • Sullivan, J. M., M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay & B. Rhoades, 2006. Hyperspectral temperature and salt dependences of absorption by water and heavy water in the 400–750 nm spectral range. Applied Optics 45: 5294–5309.

    Article  PubMed  CAS  Google Scholar 

  • Twardowski, M. S., J. M. Sullivan, P. L. Donaghay & J. R. V. Zaneveld, 1999. Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9. Journal of Atmospheric Oceanic Technology 16: 691–707.

    Article  Google Scholar 

  • Twardowski, M. S., E. Boss, J. B. Macdonald, W. C. Pegau, A. H. Barnard & J. R. V. Zaneveld, 2001. A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case waters. Journal of Geophysical Research 106(C7): 14129–14142.

    Article  CAS  Google Scholar 

  • Vanni, M. J., J. S. Andrews, W. H. Renwick, M. J. Gonzalez & S. J. Noble, 2006. Nutrient and light limitation of reservoir phytoplankton in relation to storm-mediated pulses in stream discharge. Archiv für Hydrobiologie 167: 421–455.

    Article  CAS  Google Scholar 

  • Voss, K. J., S. McLean, M. Lewis, C. Johnson, S. Flora, M. Feinholz, M. Yarbrough, C. Trees, M. Twardowski & D. Clark, 2010. An example crossover experiment for testing new vicarious calibration techniques for satellite ocean color radiometry. Journal of Atmospheric and Oceanic Technology 27: 1747–1759.

    Article  Google Scholar 

  • Watson, S. B., E. McCauley & J. A. Downing, 1997. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnology and Oceanography 42: 487–495.

    Article  Google Scholar 

  • WET Labs Inc., 2008. Scattering Meter ECO BB–9 User’s Guide. Philomath, OR [Available on internet at www.wetlabs.com/products/pub/eco/bb9j.pdf].

  • Wetzel, R. G., 2001. Limnology Lakes and River Ecosystems, 3rd ed. Academic Press, London.

    Google Scholar 

  • Whitmire, S. B., W. S. Pegau, L. Karp-Boss, E. Boss & T. J. Cowles, 2010. Spectral backscattering properties of marine phytoplankton cultures. Optical Express 18: 15073–15093.

    Article  Google Scholar 

  • Zaneveld, J. R. V., J. Kitchen & C. Moore, 1994. Scattering error correction of reflecting tube absorption meter. In Jaffe, J. S. (ed,), Ocean Optics XII, International Society of Optical Engineering (SPIE Proceedings 2258): 44–55.

  • Zhang, Y., M. Liu, M. A. Van Dijk, G. Zhu, Z. Gong, Y. Li & B. Qin, 2009. Measured and numerically partitioned phytoplankton spectral absorption coefficients in inland waters. Journal of Plankton Research 31: 311–323.

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank the Upstate Freshwater Institute (UFI) for helping fund this research and for providing field instrumentation and assistance. UFI also performed the laboratory measurements. We are grateful to the staff at the School of Marine Sciences, University of Maine for technical and administrative support. The authors gratefully acknowledge valuable suggestions made by two anonymous reviewers. This contribution is No. 312 from the Upstate Freshwater Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kalenak.

Additional information

Handling editor: P. Nõges

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalenak, D., Boss, E. & Effler, S.W. Inherent optical properties of suspended particulates in four temperate lakes: application of in situ spectroscopy. Hydrobiologia 713, 127–148 (2013). https://doi.org/10.1007/s10750-013-1498-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1498-5

Keywords

Navigation