Skip to main content
Log in

Exploring the robustness of macrophyte-based classification methods to assess the ecological status of coastal and transitional ecosystems under the Water Framework Directive

  • WATER BODIES IN EUROPE
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Identifying and quantifying the factors that contribute to the potential misclassification of the ecological status of water bodies is a major challenge of the Water Framework Directive (WFD). The present study compiles extensive biomonitoring data from a range of macrophyte-based classification methods developed by several European countries. The data reflect spatial and temporal variation as well as inter-observer variation. Uncertainty analysis identified that factors related to the spatial scale of sampling generally contributed most to the uncertainty in classifying water bodies to their ecological status, reflecting the high horizontal and depth-related heterogeneity displayed by macrophyte communities. In contrast, the uncertainty associated with temporal variation was low. In addition, inter-observer variation, where assessed, did not contribute much to overall uncertainty, indicating that these methods are easily transferable and insensitive to observer error. The study, therefore, suggests that macrophyte-based sampling schemes should prioritize large spatial replication over temporal replication to maximize the effectiveness and reliability of water body classification within the WFD. We encourage conducting similar uncertainty analyses for new/additional ecological indicators to optimize sampling schemes and improve the reliability of classification of ecological status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ballesteros, E., X. Torras, S. Pinedo, M. García, M. L. Mangialajo & M. de Torres, 2007. A new methodology based on littoral community cartography dominated by macroalgae for the implementation of the European Water Framework Directive. Marine Pollution Bulletin 55: 172–180.

    Article  PubMed  CAS  Google Scholar 

  • Balsby, T. J. S., J. Carstensen & D. Krause-Jensen, 2012. Sources of uncertainty in estimation of eelgrass depth limits. Hydrobiologia, this issue. doi:10.1007/s10750-012-1374-8.

  • Bates, D., 2005. Fitting linear mixed models in R. R News 5(1), 27–30. <http://CRAN.R-project.org/doc/Rnews/>.

  • Bates, D., 2007. lme4: Linear mixed-effects models using S4 classes. R package version 0.99875-9. <http://CRAN.R-project.org>.

  • Bennett, S., G. Roca, J. Romero & T. Alcoverro, 2011. Ecological status of seagrass ecosystems: an uncertainty analysis of the meadow classification based on the Posidonia oceanica multivariate index (POMI). Marine Pollution Bulletin 62: 1616–1621.

    Article  PubMed  CAS  Google Scholar 

  • Birk, S. & D. Hering, 2006. A new procedure for comparing class boundaries of biological assessment methods: a case study from the Danube. Ecological Indicators 9: 528–539.

    Article  Google Scholar 

  • Carstensen, J., 2007. Statistical principles for ecological status classification of Water Framework Directive monitoring data. Marine Pollution Bulletin 55: 3–15.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, R. T. & D. Hering, 2006. Errors and uncertainty in bioassessment methods – major results and conclusions from the STAR project and their application using STARBUGS. Hydrobiologia 566: 433–439.

    Article  Google Scholar 

  • Clarke, R. T., 2010. WISERBUGS 1.1 (WISER Bioassessment Uncertainty Guidance Software) tool for assessing confidence of WFD ecological status. User and Manual Software, Bournemouth University.

  • Clarke, R. T., 2012. Estimating confidence of European WFD ecological status class and WISER Bioassessment Uncertainty Guidance Software (WISERBUGS). Hydrobiologia, this issue. doi:10.1007/s10750-012-1245-3.

  • Cloern, J. E., 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253.

    Article  CAS  Google Scholar 

  • Danish Nature Agency, 2010. Fastlæggelse af referenceforhold og miljømål samt beregning af indsatsbehov for de marine områder. Appendix 5 in ‘Retningslinier for udarbejdelse af indsatsprogramr’.

  • Dencheva, K. Improvements in sampling design and estimation of Ecological Index – EI (modified Ecological Evaluation Index) of macrophytobenthic communities as a tool for implementation of European Water Framework Directive. In press. Comptes Rendus de l’Académie des Sciences.

  • Díez, I., M. Bustamante, A. Santolaria, J. Tajadura, N. Muguerza, A. Borja, I. Muxika, J. Saiz-Salinas & J. M. Gorostiaga, 2012. Development of a tool for assessing the ecological quality status of intertidal coastal rocky assemblages, within Atlantic Iberian coasts. Ecological Indicators 12: 58–71.

    Article  Google Scholar 

  • Duarte, C. M., 1991. Seagrass depth limits. Aquatic Botany 40: 363–377.

    Article  Google Scholar 

  • EC, 2000. DIRECTIVE 2000/60/EC of the European parliament and of the council, of 23 October 2000, establishing a framework for Community action in the field of water policy. Official Journal of the European Communities, G.U.C.E. 22/12/2000, L 327.

  • Fonseca, M., P. E. Whitfield, N. M. Kelly & S. S. Bell SS, 2002. Modeling seagrass landscape pattern and associated ecological attributes. Ecological Applications 12: 218–237.

    Article  Google Scholar 

  • Hering, D., A. Borja, J. Carstensen, L. Carvalho, M. Elliot, C. K. Feld, A. S. Heiskanen, R. K. Johnson, J. Moe, D. Pont, A. L. Solheim & W. van de Bund, 2010. The European Water Framework Directive at the age of 10: a critical review of the achievements with recommendations for the future. Science of the Total Environment 408: 4007–4019.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, M., H. Bennion, A. Burgess, J. Ellis, S. Juggins, R. Guthrie, J. Jamieson, V. Adriaenssens & M. Yallop, 2009. Uncertainty in ecological status assessments of lakes and rivers using diatoms. Hydrobiologia 633: 5–15.

    Article  CAS  Google Scholar 

  • Landres, P. B., P. Morgan & F. J. Swanson, 1999. Overview of the use of natural variability concepts in managing ecological systems. Ecological Applications 9(4): 1179–1188.

    Google Scholar 

  • Lopez y Royo, C., G. Pergent, T. Alcoverro, M. C. Buia, G. Casazza, B. Martínez-Crego, M. Pérez, F. Silvestre & J. Romero, 2011. The seagrass Posidonia oceanica as indicator of coastal water quality: Experimental intercalibration of classification systems. Ecological Indicators 11: 55–563.

    Google Scholar 

  • Marbà, N., J. Cebrián, S. Enríquez & C. M. Duarte, 1996. Growth patterns of Western Mediterranean seagrasses: species-specific responses to seasonal forcing. Marine Ecology Progress Series 133: 203–215.

    Article  Google Scholar 

  • Martínez-Crego, B., A. Vergés, T. Alcoverro & J. Romero, 2008. Selection of multiple seagrass indicators for environmental biomonitoring. Marine Ecology Progress Series 361: 93–109.

    Article  Google Scholar 

  • Mascaró, O., S. Bennett, N. Marbà, V. Nikolić, J. Romero, C. M. Duarte & T. Alcoverro, 2012. Uncertainty analysis along the ecological quality status of water bodies: the response of the Posidonia oceanica multivariate index (POMI) in three Mediterranean regions. Marine Pollution Bulletin 64: 926–931.

    Article  PubMed  Google Scholar 

  • Moss, B., 2007. Shallow lakes, the water framework directive and life. What should it all be about? Hydrobiologia 584: 381–394.

    Google Scholar 

  • Oliva, S., O. Mascaró, I. Llagostera, M. Pérez & J. Romero, 2011. Selection of metrics based on the seagrass Cymodocea nodosa and development of a biotic index (CYMOX) for assessing ecological status of coastal and transitional waters. Estuarine, Coastal and Shelf Science xx, 1–11.

  • Orfanidis, S., P. Panayotidis & K. I. Ugland, 2011. Ecological Evaluation Index continuous formula (EEI-c) application: a step forward for functional groups, the formula and reference condition values. The Mediterranean Marine Science Journal 12(2): 199–231.

    Google Scholar 

  • Pont, D., P. Bady, M. Logez & J. Veslot, 2009. EFI + Project. Improvement and spatial extension of the European Fish Index Deliverable 4.1: Report on the modelling of reference conditions and on the sensitivity of candidate metrics to anthropogenic pressures. Deliverable 4.2: Report on the final development and validation of the new European Fish Index and method, including a complete technical description of the new method. 6th Framework Programme Priority FP6-2005-SSP-5-A. No 0044096. Final Report, 179 pp (http://efi-plus.boku.ac.at/).

  • Prygiel, J., P. Carpentier, S. Almeida, M. Coste, J. C. Druart, L. Ector, D. Guillard, M. A. Honore, R. Iserentant, P. Ledeganck, C. Lalanne-Cassou, C. Lesinak, I. Mercier, P. Moncaut, M. Nazart, N. Nouchet, F. Peres, V. Peeters, F. Rimet, A. Rumeau, S. Sabater, F. Straub, M. Torrisi, L. Tudesque, B. van der Vijver, H. Vidal, J. Vizinet & N. Zydek, 2002. Determination of the diatom index (IBD NF T 90–354): results of an intercalibration exercise. Journal of Applied Phycology 14: 27–39.

    Article  Google Scholar 

  • Romero, J., B. Martínez-Crego, T. Alcoverro & M. Pérez, 2007. A multivariate index based on the seagrass Posidonia oceanica (POMI) to assess ecological status of coastal waters under the Water Framework Directive (WFD). Marine Pollution Bulletin 55: 196–204.

    Article  PubMed  CAS  Google Scholar 

  • Søndergaard, M., E. Jeppesen, J. P. Jensen & S. L. Amsinck, 2005. Water framework directive: ecological classification of Danish lakes. Journal of Applied Ecology 42: 616–629.

    Article  Google Scholar 

  • Staniszewski, R., K. Szoszkiewicz, J. Zbierska, J. Lesny, S. Jusik & R. T. Clarke, 2006. Assessment of sources of uncertainty in macrophyte surveys and the consequences for river classification. Hydrobiologia 566: 235–246.

    Article  Google Scholar 

  • Swedish Environmental Protection Agency: Handbook 2007:4. Status, Potential and Quality Measures for Lakes, Rivers, Coastal and Transitional Waters, Appendix B.

  • Vergés, A., F. Tomas & E. Ballesteros, 2012. Interactive effects of depth and marine protection on predation and herbivory patterns. Marine Ecology Progress Series 450: 55–65.

    Article  Google Scholar 

Download references

Acknowledgments

We thank all the different people involved in the monitoring programs of Catalonia, Balearic Is. and Croatia for their work in the field and laboratory. We also thank Michael Dunbar and Ralph Clarke for their assistance in statistical analyses and Rohan Arthur for his inputs in the manuscript. This research was funded by l’Agencia Catalana de l’Aigua, EEMA – Avaliação do Estado Ecológico das Massas de Água Costeiras e de Transição e do Potencial Ecológico das Massas de Água Fortemente Modificadas (POVT-03-0133-FCOES-000017) and WISER (Water bodies in Europe: Integrative Systems to assess Ecological status and Recovery) funded under the 7th EU Framework Program, Theme 6 (Environment including Climate Change, Contract No.: 226273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriol Mascaró.

Additional information

Guest editors: C. K. Feld, A. Borja, L. Carvalho & D. Hering / Water bodies in Europe: integrative systems to assess ecological status and recovery

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mascaró, O., Alcoverro, T., Dencheva, K. et al. Exploring the robustness of macrophyte-based classification methods to assess the ecological status of coastal and transitional ecosystems under the Water Framework Directive. Hydrobiologia 704, 279–291 (2013). https://doi.org/10.1007/s10750-012-1426-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1426-0

Keywords

Navigation