Skip to main content

Advertisement

Log in

Global warming and potential shift in reference conditions: the case of functional fish-based metrics

  • WATER BODIES IN EUROPE
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The reference condition approach, advocated by the Water Framework Directive, is the basis of most currently used multimetric indices using functional traits of fish species. The ecological status of streams is assessed by measuring the deviation of the observed trait values from the theoretical values of reference conditions in the absence of anthropogenic disturbances. While reference conditions serve as baselines for ecological assessment, they vary with natural environmental conditions. Therefore, global warming appears to be a major threat to the use of current indices for diagnosing future stream conditions, as climate change is projected to modify assemblage composition, suggesting that the functional structure of fish assemblages will also be affected. The main objectives of this study are to assess the potential effect of climate change on the trait composition of fish assemblages and the consequences for the establishment of reference conditions. The results highlight the relation between environmental, especially climatic, conditions and functional traits and project the effects of climate change on trait composition. Traits based on species intolerance are expected to be most negatively affected by the projected climatic shift. The consequences for the development of multimetric indices based on fish functional traits are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albelk, M. & E. Albek, 2009. Stream temperature trends in Turkey. Clean – Soil Air Water 37: 142–149.

    Article  Google Scholar 

  • Allan, J. D. & M. M. Castillo, 2007. Stream Ecology: Structure and Function of Running Waters, 2nd ed. Kluwer, Boston.

    Book  Google Scholar 

  • Argillier, C., S. Caussé, M. Gevrey, S. Pédron, S. Brucet S., M. Emmrich, E. Jeppesen, T. Lauridsen, T. Mehner, M. Olin, M. Rask, P. Volta, I. Winfield, F. Kelly, T. Krause, A. Palm & K. Holmgren, 2012. Development of a fish-based index to assess the eutrophication status of European lakes. Hydrobiologia, this issue.

  • Bady, P., D. Pont, M. Logez & J. Veslot, 2009. EFI+ Project. Improvement and spatial extension of the European Fish Index Deliverable 4.1: Report on the modelling of reference conditions and on the sensitivity of candidate metrics to anthropogenic pressures. Deliverable 4.2: Report on the final development and validation of the new European Fish Index and method, including a complete technical description of the new method. Final Report: 1–179.

  • Bailey, R. C., M. G. Kennedy, M. Z. Dervish & R. M. Taylor, 1998. Biological assessment of freshwater ecosystems using a reference condition approach: comparing predicted and actual benthic invertebrate communities in Yukon streams. Freshwater Biology 39: 765–774.

    Article  Google Scholar 

  • Benjamini, Y. & D. Yekutieli, 2001. The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29: 1165–1188.

    Article  Google Scholar 

  • Bonada, N., S. Doledec & B. Statzner, 2007. Taxonomic and biological trait differences of stream macroinvertebrate communities between Mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biology 13: 1658–1671.

    Article  Google Scholar 

  • Buisson, L. & G. Grenouillet, 2009. Contrasted impacts of climate change on stream fish assemblages along an environmental gradient. Diversity and Distributions 15: 613–626.

    Article  Google Scholar 

  • Buisson, L., W. Thuillier, S. Lek, P. Lim & G. Grenouillet, 2008. Climate change hastens the turnover of stream fish assemblages. Global Change Biology 14: 2232–2248.

    Article  Google Scholar 

  • Buisson, L., W. Thuillier, N. Casajus, S. Lek & G. Grenouillet, 2010. Uncertainty in ensemble forecasting of species distribution. Global Change Biology 16: 1145–1157.

    Article  Google Scholar 

  • Cameron, A. C. & P. K. Trivedi, 1998. Regression Analysis of Count Data. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Chevan, A. & M. Sutherland, 1991. Hierarchical partitioning. The American Statistician 45: 90–96.

    Google Scholar 

  • Dudoit, S. & M. J. van der Laan, 2008. Multiple Testing Procedures with Applications to Genomics. Springer Series in Statistics. Springer, New York.

    Book  Google Scholar 

  • Faraway, J. J., 2006. Extending the Linear Model with R. Generalized Linear, Mixed Effects and Nonparametric Regression Models. Chapman and Hall/CRC, Boca Raton, FL.

    Google Scholar 

  • Fausch, K. D., J. R. Karr & P. R. Yant, 1984. Regional application of an index of biotic integrity based on stream fish communities. Transactions of the American Fisheries Society 113: 39–55.

    Article  Google Scholar 

  • Flato, G. M. & G. J. Boer, 2001. Warming asymmetry in climate change simulations. Geophysical Research Letters 28: 195–198.

    Article  Google Scholar 

  • Fox, J., 2002. An R and S Plus Companion to Applied Regression. Sage, Thousand Oaks, CA.

    Google Scholar 

  • Gasith, A. & V. H. Resh, 1999. Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics 30: 51–81.

    Article  Google Scholar 

  • Goldstein, R. M. & M. R. Meador, 2004. Comparisons of fish species traits from small streams to large rivers. Transactions of the American Fisheries Society 133: 971–983.

    Article  Google Scholar 

  • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell & R. A. Wood, 2000. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics 16: 147–168.

    Article  Google Scholar 

  • Gordon, N. D., T. A. McMahon, B. L. Finlayson, C. J. Gippel & R. J. Nathan, 2004. Stream Hydrology. An Introduction for Ecologists, 2nd ed. Wiley, New York.

    Google Scholar 

  • Graham, C. T. & C. Harrod, 2009. Implications of climate change for the fishes of the British Isles. Journal of Fish Biology 74: 1143–1205.

    Article  PubMed  CAS  Google Scholar 

  • Grenouillet, G., D. Pont & C. Herisse, 2004. Within-basin fish assemblage structure: the relative influence of habitat versus stream spatial position on local species richness. Canadian Journal of Fisheries and Aquatic Sciences 61: 93–102.

    Article  Google Scholar 

  • Grenouillet, G., L. Buisson, N. Casajus & S. Lek, 2011. Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34: 9–17.

    Article  Google Scholar 

  • Halliwell, D. B., R. W. Langdon, R. A. Daniels, J. P. Kurtenbach & R. A. Jacobson, 1999. Classification of freshwater fish species of the northeastern United States for use in the development of indices of biological integrity, with regional applications. In Simon, T. P. (ed.), Assessing the Sustainability and Biological Integrity of Water Resources Using Fish Communities. CRC, Boca Raton, FL: 301–333.

    Google Scholar 

  • Harris, J. H. & R. Silveira, 1999. Large-scale assessments of river health using an Index of Biotic Integrity with low-diversity fish communities. Freshwater Biology 41: 235–252.

    Article  Google Scholar 

  • Hastie, T., R. Tibshirani & J. Friedman, 2009. The Element of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer, New York.

    Book  Google Scholar 

  • Hawkins, C. P., Y. Cao & B. Roper, 2010. Method of predicting reference condition biota affects the performance and interpretation of ecological indices. Freshwater Biology 55: 1066–1085.

    Article  Google Scholar 

  • Haxton, T. J. & C. S. Findlay, 2008. Meta-analysis of the impacts of water management on aquatic communities. Canadian Journal of Fisheries and Aquatic Sciences 65: 437–447.

    Article  Google Scholar 

  • Hering, D., C. K. Feld, O. Moog & T. Ofenböck, 2006. Cook book for the development of a Multimetric Index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia 566: 311–324.

    Article  Google Scholar 

  • Hering, D., A. Schmidt-Kloiber, J. Murphy, S. Lücke, C. Zamora-Muñoz, M. J. Lopez-Rodriguez, T. Huber & W. Graf, 2009. Potential impact of climate change on aquatic insects: a sensitivity analysis for European caddisflies (Trichoptera) based on distribution pattern and ecological preferences. Aquatic Sciences 71: 3–14.

    Article  Google Scholar 

  • Hering, D., H. Bennion, S. Birk, A. Borja, A. Basset, J. Carstensen, L. Carvalho, R. Clarke, H. Duel, M. Dunbar, M. Elliott, A.-S. Heiskanen, S. Hellsten, P. Hendriksen, K. Irvine, E. Jeppesen, R. K. Johnson, A. Kolada, A. Lyche Solheim, O. Malve, N. Marba, J. C. Marques, J. Moe, S. Moncheva, G. Morabito, T. Noges, D. Pont, M. Pusch, S. Schmutz, A. Solimini, W. van de Bund, P.F.M. Verdonschot & C.K. Feld, 2012. Assessment and recovery of European water bodies: key messages from the WISER project. Hydrobiologia, this issue.

  • Hirst, A. C., 1999. The Southern Ocean response to global warming in the CSIRO coupled ocean–atmosphere model. Environmental Modelling and Software: Special Issue on Modelling Global Climatic Change 14: 227–242.

    Article  Google Scholar 

  • Hirst, A. C., S. P. O’Farrell & H. B. Gordon, 2000. Comparison of a coupled ocean–atmosphere model with and without oceanic eddy-induced advection. 1. Ocean spin-up and control integrations. Journal of Climate 13: 139–163.

    Article  Google Scholar 

  • Hoeinghaus, D. J., K. O. Winemiller & J. S. Birnbaum, 2007. Local and regional determinants of stream fish assemblage structure: inferences based on taxonomic vs. functional groups. Journal of Biogeography 34: 324–338.

    Article  Google Scholar 

  • Holzer, S., 2008. European Fish Species: Taxa and Guilds Classification Regarding Fish-Based Assessment Methods. Universität für Bodenkultur, Vienna.

    Google Scholar 

  • Horwitz, R. J., 1978. Temporal variability patterns and the distributional patterns of stream fishes. Ecological Monographs 48: 307–321.

    Article  Google Scholar 

  • Hughes, R. M., P. R. Kaufmann, A. T. Herlihy, T. M. Kincaid, L. Reynolds & D. P. Larsen, 1998. A process for developing and evaluating indices of fish assemblage integrity. Canadian Journal of Fisheries & Aquatic Sciences 55: 1618–1631.

    Article  Google Scholar 

  • Hugueny, B., 1989. West-African rivers as biogeographic islands – species richness of fish communities. Oecologia 79: 236–243.

    Article  Google Scholar 

  • Ibañez, C., J. Belliard, R. M. Hughes, P. Irz, A. Kamdem-Toham, N. Lamouroux, P. A. Tedesco & T. Oberdorff, 2009. Convergence of temperate and tropical stream fish assemblages. Ecography 32: 658–670.

    Article  Google Scholar 

  • Illies, J., 1978. Limnofauna Europaea. Gustav Fischer Verlag, Stuttaart, NY.

    Google Scholar 

  • IPCC, 2007. Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland: 104 pp.

  • Isaak, D. J., S. Wollrab, D. Horan & G. Chandler, 2012. Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. Climatic Change 113: 499–524.

    Google Scholar 

  • Joy, M. K. & R. G. Death, 2004. Application of the index of biotic integrity methodology to New Zealand freshwater fish communities. Environmental Management 34: 415–428.

    Article  PubMed  Google Scholar 

  • Karr, J. R., 1981. Assessment of biotic integrity using fish communities. Fisheries 6: 21–27.

    Article  Google Scholar 

  • Karr, J. R., 1991. Biological integrity: a long-neglected aspect of water resource management. Ecological Applications 1: 66–84.

    Article  Google Scholar 

  • Karr, J. R. & E. W. Chu, 1999. Restoring Life in Running Waters: Better Biological Monitoring. Island, Washington, DC.

    Google Scholar 

  • Keddy, P. A., 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3: 157–164.

    Article  Google Scholar 

  • Kutner, M. H., C. J. Nachtsheim, J. Neter & W. Li, 2005. Applied Linear Statistical Models, 5th ed. McGraw-Hill/Irwin, New York.

    Google Scholar 

  • Lamouroux, N., N. L. Poff & P. L. Angermeier, 2002. Intercontinental convergence of stream fish community traits along geomorphic and hydraulic gradients. Ecology 83: 1792–1807.

    Article  Google Scholar 

  • Lassale, G., M. Béguer, L. Beaulaton & E. Rochard, 2008. Diadromous fish conservation plans need to consider global warming issues: an approach using biogeographical models. Biological Conservation 141: 1105–1118.

    Article  Google Scholar 

  • Lavorel, S. & E. Garnier, 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16: 545–556.

    Article  Google Scholar 

  • Logez, M. & D. Pont, 2011. Development of metrics based on fish body size and species traits to assess European coldwater streams. Ecological Indicators 11: 1204–1215.

    Article  Google Scholar 

  • Logez, M., D. Pont & M. T. Ferreira, 2010. Do Iberian and European fish faunas exhibit convergent functional structure along environmental gradients? Journal of the North American Benthological Society 29: 1310–1323.

    Article  Google Scholar 

  • Logez, M., P. Bady, A. Melcher & D. Pont, 2012a. A continental-scale analysis of fish assemblage functional structure in European rivers. Ecography.

  • Logez, M., P. Bady & D. Pont, 2012b. Modelling the habitat requirement of riverine fish species at the European scale: sensitivity to temperature and precipitation and associated uncertainty. Ecology of Freshwater Fish 21: 266–282.

    Article  Google Scholar 

  • Mac Nally, R., 2000. Regression and model building in conservation biology, biogeography and ecology: the distinction between and reconciliation of ‘predictive’ and ‘explanatory’ models. Biodiversity and Conservation 9: 655–671.

    Article  Google Scholar 

  • Matthews, W. J., 1998. Patterns in Freshwater Fish Ecology. Chapman and Hall, New York.

    Book  Google Scholar 

  • McCullagh, P. & J. A. Nelder, 1989. Generalized Linear Models, 2nd ed. Chapman and Hall, London.

    Google Scholar 

  • Melcher, A., S. Schmutz, G. Haidvogl & K. Moder, 2007. Spatially based methods to assess the ecological status of European fish assemblage types. Fisheries Management and Ecology 14: 453–463.

    Article  Google Scholar 

  • Mitchell, T. D. & P. D. Jones, 2005. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology 25: 693–712.

    Article  Google Scholar 

  • Mitchell, J. F. B., T. C. Johns & C. A. Senior, 1998. Transient response to increasing greenhouse gases using models with and without flux adjustment. Hadley Centre Technical Note 2. UK Meteorological Office, London Road, Bracknell, UK.

  • Mitchell, T. D., T. R. Carter, P. D. Jones, M. Hulme & M. New, 2004. A comprehensive set of high resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Working Paper 55. Tyndall Centre for Climate Change Research, Norwich, UK.

  • Montgomery, D. C., E. A. Peck & G. G. Vining, 2006. Introduction to Linear Regression Analysis, 4th ed. Wiley Series in Probability and Statistics, New York.

    Google Scholar 

  • Muxika, I., A. Borja & J. Bald, 2007. Using historical data, expert judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive. Marine Pollution Bulletin 55: 16–29.

    Article  PubMed  CAS  Google Scholar 

  • Nakicenovic, N. & R. Swart (eds), 2000. Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

    Google Scholar 

  • Noble, R. A. A., I. G. Cowx, D. Goffaux & P. Kestemont, 2007. Assessing the health of European rivers using functional ecological guilds of fish communities: standardising species classification and approaches to metric selection. Fisheries Management and Ecology 14: 381–392.

    Article  Google Scholar 

  • Oberdorff, T., E. Guilbert & J.-C. Lucchetta, 1993. Patterns of fish species richness in the Seine River basin, France. Hydrobiologia 259: 157–167.

    Article  Google Scholar 

  • Oberdorff, T., J. F. Guegan & B. Hugueny, 1995. Global scale patterns of fish species richness in rivers. Ecography 18: 345–352.

    Article  Google Scholar 

  • Oberdorff, T., D. Pont, B. Hugueny & D. Chessel, 2001. A probabilistic model characterizing fish assemblages of French rivers: a framework for environmental assessment. Freshwater Biology 46: 399–415.

    Article  Google Scholar 

  • Oberdorff, T., D. Pont, B. Hugueny & J. P. Porcher, 2002. Development and validation of a fish-based index for the assessment of ‘river health’ in France. Freshwater Biology 47: 1720–1734.

    Article  Google Scholar 

  • Pont, D., B. Hugueny & T. Oberdorff, 2005. Modelling habitat requirement of European fishes: do species have similar responses to local and regional environmental constraints? Canadian Journal of Fisheries and Aquatic Sciences 62: 163–173.

    Article  Google Scholar 

  • Pont, D., B. Hugueny, U. Beier, D. Goffaux, A. Melcher, R. Noble, C. Rogers, N. Roset & S. Schmutz, 2006. Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages. Journal of Applied Ecology 43: 70–80.

    Article  Google Scholar 

  • Pont, D., B. Hugueny & C. Rogers, 2007. Development of a fish-based index for the assessment of river health in Europe: the European Fish Index. Fisheries Management and Ecology 14: 427–439.

    Article  Google Scholar 

  • Pont, D., R. M. Hughes, T. R. Whittier & S. Schmutz, 2009. A predictive index of biotic integrity model for aquatic-vertebrate assemblages of western U.S. streams. Transactions of the American Fisheries Society 138: 292–305.

    Article  Google Scholar 

  • Pont, D. (coordinator) et al., 2011. Water Framework Directive. Intercalibration Phase 2. River Fish European Intercalibration Group. Final Report to ECOSTAT: 1–105.

  • Roset, N., G. Grenouillet, D. Goffaux, D. Pont & P. Kestemont, 2007. A review of existing fish assemblage indicators and methodologies. Fisheries Management and Ecology 14: 393–405.

    Article  Google Scholar 

  • Segurado, P., M. T. Ferreira, P. Pinheiro & J. M. Santos, 2008. Mediterranean river assessment. Testing the response of guild-based metric, Work Package 3, Subtask 7. EFI+ Consortium – improvement and spatial extension of the European Fish Index. EU-Project Nr. 044096: 5–9.

  • Shaffer, J. P., 1995. Multiple hypothesis-testing. Annual Review of Psychology 46: 561–584.

    Article  Google Scholar 

  • Simon, T. P. & J. Lyons, 1995. Application of the index of biotic integrity to evaluate water resource integrity in freshwater ecosystems. In Davis, W. S. & T. P. Simon (eds), Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. CRC, Boca Raton, FL: 245–262.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed. W.H. Freeman, New York.

    Google Scholar 

  • Somero, G. N., 1997. Temperature relationships: from molecules to biogeography. In Danztler, W. H. (ed.), Handbook of Physiology: Section 13 Comparative Physiology, VII, Vol. 19. Oxford University Press, Oxford: 1391–1444.

    Google Scholar 

  • Statzner, B., S. Dolédec & B. Hugueny, 2004. Biological trait composition of European stream invertebrate communities: assessing the effects of various trait filter types. Ecography 27: 470–488.

    Article  Google Scholar 

  • Stoddard, J. L., D. P. Larsen, C. P. Hawkins, R. K. Johnson & R. H. Norris, 2006. Setting expectations for the ecological condition of streams: the concept of reference condition. Ecological Applications 16: 1267–1276.

    Article  PubMed  Google Scholar 

  • Stoddard, J. L., A. T. Herlihy, D. V. Peck, R. M. Hughes, T. R. Whittier & E. Tarquinio, 2008. A process for creating multimetric indices for large-scale aquatic surveys. Journal of the North American Benthological Society 27: 878–891.

    Article  Google Scholar 

  • Swetnam, T. W., C. D. Allen & J. L. Betancourt, 1999. Applied historical ecology: using the past to manage for the future. Ecological Applications 9: 1189–1206.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Vehanen, T., T. Sutela & H. Korhonen, 2010. Environmental assessment of boreal rivers using fish data – a contribution to the Water Framework Directive. Fisheries Management and Ecology 17: 165–175.

    Article  Google Scholar 

  • Webb, B. W., 1996. Trends in water stream and river temperature. Hydrological Processes 10: 205–226.

    Article  Google Scholar 

  • Webb, B. W. & F. Nobilis, 1995. Long term water temperature trends in Austrian rivers. Hydrological Sciences Journal 40: 83–96.

    Article  Google Scholar 

  • Webb, B. W. & F. Nobilis, 2007. Long-term changes in river temperature and the influence of climatic and hydrological factors. Hydrological Sciences – Journal des Sciences Hydrologiques 52: 74–85.

    Article  Google Scholar 

  • Xenopoulos, M. A., D. M. Lodge, J. Alcamo, M. Marker, K. Schulze & D. P. Van Vuuren, 2005. Scenarios of freshwater fish extinctions from climate change and water withdrawal. Global Change Biology 11: 1557–1564.

    Article  Google Scholar 

  • Zaroban, D. W., M. P. Mulvey, T. R. Maret, R. M. Hughes & G. D. Merritt, 1999. Classification of species attributes for Pacific Northwest freshwater fishes. Northwest Science 73: 81–93.

    Google Scholar 

Download references

Acknowledgments

We are grateful to all the members of the European EFI+ project (contract number 044096, http://efi-plus.boku.ac.at/), which provided all the data. This paper is a result of the WISER (Water bodies in Europe: Integrative Systems to assess Ecological status and Recovery) project funded by the European Union under the 7th Framework Programme, Theme 6 (Environment including Climate Change) (contract no. 226273), http://www.wiser.eu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Logez.

Additional information

Guest editors: C. K. Feld, A. Borja, L. Carvalho & D. Hering / Water bodies in Europe: integrative systems to assess ecological status and recovery

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 173 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logez, M., Pont, D. Global warming and potential shift in reference conditions: the case of functional fish-based metrics. Hydrobiologia 704, 417–436 (2013). https://doi.org/10.1007/s10750-012-1250-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1250-6

Keywords

Navigation