Skip to main content

Advertisement

Log in

Global climate change will severely decrease potential distribution of the East Asian coldwater fish Rhynchocypris oxycephalus (Actinopterygii, Cyprinidae)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Global climate change has been suggested to cause decrease of distribution area of many species. However, this has not been tested for East Asian inland coldwater fish. Chinese minnow (Rhynchocypris oxycephalus) is a small typical coldwater fish, which is endemic to East Asia and generally inhabits stream headwaters. Due to its occurrence in temperate south China, there is growing concern about its future fate in the face of global warming. In this study, we employed maximum entropy approach to analyze how distribution of this species would be impacted by future climate change. We collected data of 310 independent distribution points and 20 environmental variables, and conducted modeling under three general circulation models assuming two gas emission scenarios for 2020s, 2050s, and 2080s. The results showed that the Min temperature of coldest month was the most important climatic variable for potential distribution of the Chinese minnow. Modeling predicted geographical distribution of the Chinese minnow would shrink over time and become much more limited in all the situations especially in South-eastern China, and there would be little suitable habitat left in this region by 2080s. Our results confirm that climate change clearly poses a severe threat to the Chinese minnow, and we suggest that conservation efforts should focus on lower temperature areas within the current range, because these areas will remain relatively cool and may be still suitable for the Chinese minnow even under the most drastic climate change scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anciaes, M. & A. T. Peterson, 2006. Climate change effects on neotropical manakin diversity based on ecological niche modeling. Condor 108: 778–791.

    Article  Google Scholar 

  • Aranda, S. C. & J. M. Lobo, 2011. How well does presence-only-based species distribution modelling predict assemblage diversity? A case study of the Tenerife flora. Ecography 34: 31–38.

    Article  Google Scholar 

  • Baxter, G. T. & M. D. Stone, 1995. Fishes of Wyoming. Wyoming Game and Fish Department, Cheyenne.

    Google Scholar 

  • Bogutskaya, N. G., A. M. Naseka, S. V. Shedko, E. D. Vasil’eva & I. A. Chereshnev, 2008. The fishes of the Amur River: updated check-list and zoogeography. Ichthyological Exploration of Freshwaters 19: 301–366.

    Google Scholar 

  • Broennimann, O., U. A. Treier, H. Muller-Scharer, W. Thuiller, A. T. Peterson & A. Guisan, 2007. Evidence of climatic niche shift during biological invasion. Ecology Letters 10: 701–709.

    Article  PubMed  CAS  Google Scholar 

  • Buisson, L., L. Blanc & G. Grenouillet, 2008a. Modelling stream fish species distribution in a river network: the relative effects of temperature versus physical factors. Ecology of Freshwater Fish 17: 244–257.

    Article  Google Scholar 

  • Buisson, L., W. Thuiller, S. Lek, P. Lim & G. Grenouillet, 2008b. Climate change hastens the turnover of stream fish assemblages. Global Change Biology 14: 2232–2248.

    Article  Google Scholar 

  • Chapin, F. S., E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavorel, O. E. Sala, S. E. Hobbie, M. C. Mack & S. Diaz, 2000. Consequences of changing biodiversity. Nature 405: 234–242.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y. Y. (ed.), 1998. Fauna Sinica. Osteichthyes. Cypriniformes II. Sciences Press, Beijing.

    Google Scholar 

  • Chu, C., N. E. Mandrak & C. K. Minns, 2005. Potential impacts of climate change on the distributions of several common and rare freshwater fishes in Canada. Diversity and Distributions 11: 299–310.

    Article  Google Scholar 

  • Collins, M., S. F. B. Tett & C. Cooper, 2001. The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics 17: 61–81.

    Article  Google Scholar 

  • Davis, A. J., L. S. Jenkinson, J. H. Lawton, B. Shorrocks & S. Wood, 1998. Making mistakes when predicting shifts in species range in response to global warming. Nature 391: 783–786.

    Article  PubMed  CAS  Google Scholar 

  • Elith, J., C. H. Graham, R. P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. M. Overton, A. T. Peterson, S. J. Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberon, S. Williams, M. S. Wisz & N. E. Zimmermann, 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.

    Article  Google Scholar 

  • Fielding, A. H. & J. F. Bell, 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24: 38–49.

    Article  Google Scholar 

  • Fischer, J. M., M. H. Olson, C. E. Williamson, J. C. Everhart, P. J. Hogan, J. A. Mack, K. C. Rose, J. E. Saros, J. R. Stone & R. D. Vinebrooke, 2011. Implications of climate change for Daphnia in alpine lakes: predictions from long-term dynamics, spatial distribution, and a short-term experiment. Hydrobiologia 676: 263–277.

    Article  CAS  Google Scholar 

  • Fitzpatrick, M. C., A. D. Gove, N. J. Sanders & R. R. Dunn, 2008. Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia. Global Change Biology 14: 1337–1352.

    Article  Google Scholar 

  • Gibson, L., A. McNeill, P. de Tores, A. Wayne & C. Yates, 2010. Will future climate change threaten a range restricted endemic species, the quokka (Setonix brachyurus), in south west Australia? Biological Conservation 143: 2453–2461.

    Article  Google Scholar 

  • Gordon, H. B. & S. P. Farrell, 1997. Transient climate change in the CSIRO coupled model with dynamic sea ice. Monthly Weather Review 125: 875–908.

    Article  Google Scholar 

  • Grant, E. H. C., W. H. Lowe & W. F. Fagan, 2007. Living in the branches: population dynamics and ecological processes in dendritic networks. Ecology Letters 10: 165–175.

    Article  Google Scholar 

  • Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones & A. Jarvis, 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.

    Article  Google Scholar 

  • Hijmans, R. J., L. Guarino, C. Bussink & P. Mathur, 2012. DIVA-GIS. Version. 7.3. http://www.diva-gis.norg.

  • Hirzel, A. H., J. Hausser, & N. Perrin, 2004. Biomapper Version 3.1. Laboratory of Conservation Biology, Department of Ecology and Evolution, University of Lausanne. http://www.unil.ch/biomapper.

  • Hu, J. H. & Z. G. Jiang, 2011. Climate change hastens the conservation urgency of an endangered ungulate. Plos One 6: e22873.

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, M. F., 1995. Interpolating mean rainfall using thin plate smoothing splines. International Journal of Geographic Information Systems 9: 385–403.

    Article  Google Scholar 

  • Jackson, D. A. & N. E. Mandrak, 2002. Changing fish biodiversity: Predicting the loss of cyprinid biodiversity due to global climate change. In McGinn, N. A. (ed) Fisheries in a Changing Climate. American Fisheries Society Symposium, Vol. 32: 89–98.

  • Jang, M. H., J. G. Kim, S. B. Park, K. S. Jeong, G. I. Cho & G. J. Joo, 2002. The current status of the distribution of introduced fish in large river systems of South Korea. International Review of Hydrobiology 87: 319–328.

    Article  Google Scholar 

  • Kearney, M. & W. Porter, 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters 12: 334–350.

    Article  PubMed  Google Scholar 

  • Keith, D. A., H. R. Akcakaya, W. Thuiller, G. F. Midgley, R. G. Pearson, S. J. Phillips, H. M. Regan, M. B. Araujo & T. G. Rebelo, 2008. Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biology Letters 4: 560–563.

    Article  PubMed  Google Scholar 

  • Kim, S. J., G. M. Flato & G. J. Boer, 2003. A coupled climate model simulation of the last glacial maximum, part 2: approach to equilibrium. Climate Dynamics 20: 635–661.

    Google Scholar 

  • Liu, C. R., P. M. Berry, T. P. Dawson & R. G. Pearson, 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385–393.

    Article  Google Scholar 

  • Macarthur, R. H., 1972. Geographical Ecology. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Magnuson, J., 2001. 150-Year global ice record reveals major warming trend. Inter-American Institute for Global Change Research 24: 22–25.

    Google Scholar 

  • Marmion, M., M. Parviainen, M. Luoto, R. K. Heikkinen & W. Thuiller, 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15: 59–69.

    Article  Google Scholar 

  • McLaughlin, J. F., J. J. Hellmann, C. L. Boggs & P. R. Ehrlich, 2002. Climate change hastens population extinctions. Proceedings of the National Academy of Sciences of the United States of America 99: 6070–6074.

    Article  PubMed  CAS  Google Scholar 

  • Minns, C. K. & J. E. Moore, 1995. Factors limiting the distributions of Ontario’s freshwater fishes: the role of climate and other variables, and the potential impacts of climate change. Canadian Special Publication of Fisheries and Aquatic Sciences 121: 137–160.

    Google Scholar 

  • Mohseni, O., H. G. Stefan & J. G. Eaton, 2003. Global warming and potential changes in fish habitat in US streams. Climatic Change 59: 389–409.

    Article  CAS  Google Scholar 

  • Parmesan, C., 1996. Climate and species’ range. Nature 382: 765–766.

    Article  CAS  Google Scholar 

  • Parmesan, C. & G. Yohe, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.

    Article  PubMed  CAS  Google Scholar 

  • Parmesan, C., N. Ryrholm, C. Stefanescu, J. K. Hill, C. D. Thomas, H. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas & M. Warren, 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399: 579–583.

    Article  CAS  Google Scholar 

  • Peterson, A. T., J. Soberon & V. Sanchez-Cordero, 1999. Conservatism of ecological niches in evolutionary time. Science 285: 1265–1267.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, A. T., V. Sanchez-Cordero, J. Soberon, J. Bartley, R. W. Buddemeier & A. G. Navarro-Siguenza, 2001. Effects of global climate change on geographic distributions of Mexican Cracidae. Ecological Modelling 144: 21–30.

    Article  Google Scholar 

  • Peterson, A. T., M. A. Ortega-Huerta, J. Bartley, V. Sanchez-Cordero, J. Soberon, R. H. Buddemeier & D. R. B. Stockwell, 2002. Future projections for Mexican faunas under global climate change scenarios. Nature 416: 626–629.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, A. T., E. Martinez-Meyer, C. Gonzalez-Salazar & P. W. Hall, 2004. Modeled climate change effects on distributions of Canadian butterfly species. Canadian Journal of Zoology-Revue Canadienne De Zoologie 82: 851–858.

    Article  Google Scholar 

  • Phillips, S. J., M. Dudik & R. E. Schapire, 2004. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, Alberta, Canada, July 4–8.

  • Phillips, S. J. & M. Dudik, 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161–175.

    Article  Google Scholar 

  • Phillips, S. J., R. P. Anderson & R. E. Schapire, 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259.

    Article  Google Scholar 

  • Rahel, F. J., 2002. Using current biogeographic limits to predict fish distributions following climate change. American Fisheries Society Symposium 32: 99–110.

    Google Scholar 

  • Ramirez, J. & Jarvis, A., 2008. High Resolution Statistically Downscaled Future Climate Surfaces. http://gisweb.ciat.cgiar.org (accessed July 2011).

  • Roura-Pascual, N., A. V. Suarez, C. Gomez, P. Pons, Y. Touyama, A. L. Wild & A. T. Peterson, 2004. Geographical potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change. Proceedings of the Royal Society of London Series B-Biological Sciences 271: 2527–2534.

    Article  Google Scholar 

  • Sharma, S., D. A. Jackson, C. K. Minns & B. J. Shuter, 2007. Will northern fish populations be in hot water because of climate change? Global Change Biology 13: 2052–2064.

    Article  Google Scholar 

  • Swets, J. A., 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285–1293.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, M. F. de Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. T. Peterson, O. L. Phillips & S. E. Williams, 2004. Extinction risk from climate change. Nature 427: 145–148.

    Article  PubMed  CAS  Google Scholar 

  • Thuiller, W., 2004. Patterns and uncertainties of species’ range shifts under climate change. Global Change Biology 10: 2020–2027.

    Article  Google Scholar 

  • Visser, M. E., A. J. van Noordwijk, J. M. Tinbergen & C. M. Lessells, 1998. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proceedings of the Royal Society of London Series B-Biological Sciences 265: 1867–1870.

    Article  Google Scholar 

  • Williams, S. E., L. P. Shoo, J. L. Isaac, A. A. Hoffmann & G. Langham, 2008. Towards an integrated framework for assessing the vulnerability of species to climate change. Plos Biology 6: 2621–2622.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, B. X., 1984. Preliminary study on reproductive biology of Phoxinus lagowskii varicgatus in Shennongjia. Reservoir Fisheries 2: 35–39.

    Google Scholar 

Download references

Acknowledgments

Many thanks to researchers who provided locality records, particularly Shaorong Yang, Pengcheng Lin and Chuanjiang Zhou. Thanks are also to Rao Cui for invaluable assistance in the technical treatment of map analyses. This research was supported by the Innovation Projects of the Chinese Academy of Sciences (KSCXZ-YW-Z1023). Two reviewers are thanked for their useful suggestions and comments that helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanzhang Liu.

Additional information

Handling editor: Begoña Santos

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 327 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, D., Chen, M., Zhou, Z. et al. Global climate change will severely decrease potential distribution of the East Asian coldwater fish Rhynchocypris oxycephalus (Actinopterygii, Cyprinidae). Hydrobiologia 700, 23–32 (2013). https://doi.org/10.1007/s10750-012-1213-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1213-y

Keywords

Navigation