Skip to main content
Log in

Shifts in taxonomical and guild composition of littoral diatom assemblages along environmental gradients

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Diatoms are commonly and frequently used as water quality indicators, but only a few studies have been done to evaluate the importance of littoral, contemporary diatoms as bioindicators. This study aims to determine the main predictors of diatom community composition from 73 Swedish lakes. Canonical correspondence analysis (CCA) revealed pH, phosphate, nitrite/nitrate levels, longitude and percentage of forest in the catchment to be the most important factors of 51 environmental variables for structuring diatom assemblages. Cluster analysis separated the lakes into three groups based on the diatom community composition. Lakes belonging to these groups were characterised as: (1) acidic, nutrient-poor; (2) circumneutral, nutrient-poor and (3) alkaline, nutrient-rich, according to the results of a discriminant function analysis and dominant diatom taxa revealed by similarity percentage analysis. Ecological guilds according to growth morphology and the ability of nitrogen-fixation were assigned to all diatom taxa. All three lake groups exhibited a distinct guild composition. Nitrogen-fixing diatoms were found in nutrient-rich lakes, only. Our results indicate that taxonomical composition of littoral diatom assemblages can be applied in the assessment of nutrient and acidity status of Swedish lakes. Differences in distribution of the ecological guilds were connected to several environmental factors such as nutrients, light and grazing; their application in assessment of trophic status of lakes is therefore precarious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ács, E., N. M. Reskone, K. Szabo, G. Taba & K. T. Kiss, 2005. Application of benthic diatoms in water quality monitoring of Lake Velence – recommendations and assignments. Acta Botanica Hungarica 47: 211–223.

    Article  Google Scholar 

  • Albert, R. L., A. Korhola & S. Sorvari, 2009. Analysis of factors controlling epilithic diatom community compositions in subarctic lakes of Finnish Lapland. Advances in Limnology 62: 125–151.

    CAS  Google Scholar 

  • Alvarez-Blanco, I., C. Cejudo-Figueiras, E. Becares & S. Blanco, 2011. Spatiotemporal changes in diatom ecological profiles: implications for biomonitoring. Limnology 12: 157–168.

    Article  CAS  Google Scholar 

  • Bernes, C., 1991. Acidification and Liming of Swedish Freshwaters. Monitor 12, Swedish Environmental Protection Agency, Solna: 144 pp.

  • Berthon, V., A. Bouchez & F. Rimet, 2011. Using diatom life-forms and ecological guilds to assess organic pollution and trophic level in rivers: a case study of rivers in south-eastern France. Hydrobiologia 673: 259–271.

    Article  CAS  Google Scholar 

  • Bishop, K., H. Laudon, J. Hruska, P. Kram, S. Köhler & S. Löfgren, 2001. Does acidification policy follow research in northern Sweden? The case of natural acidity during the 1990’s. Water, Air, and Soil Pollution 130: 1415–1420.

    Article  Google Scholar 

  • Blanco, S., L. Ector & E. Becares, 2004. Epiphytic diatoms as water quality indicators in Spanish shallow lakes. Vie Et Milieu-Life and Environment 54: 71–79.

    Google Scholar 

  • CEMAGREF, 1982. Etude des méthodes biologiques d’appréciation quantitative de la qualité des eaux. Cemagref Rapport, Q.E. Lyon A.F. Bassin Rhone-Méditerannée-Corse: 218 pp.

  • CEN, 2003. Water quality – guidance standard for the routine sampling and pretreatment of benthic diatoms from rivers. EN 13946: 2003. European Committee for Standardization, Brussels.

  • Charles, D. F., F. W. Acker, D. D. Hart, C. W. Reimer & P. B. Cotter, 2006. Large-scale regional variation in diatom–water chemistry relationships: rivers of the eastern United States. Hydrobiologia 561: 27–57.

    Article  CAS  Google Scholar 

  • Erlandsson, M., I. Buffam, J. Fölster, H. Laudon, J. Temnerud, G. A. Weyhenmeyer & K. Bishop, 2008. Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. Global Change Biology 14: 1191–1198.

    Article  Google Scholar 

  • European Union, 2000. Directive 2000/60/EC of the European Parliament and the council establishing a framework for community action in the field of water policy. Official Journal of the European Communities 327.

  • Evans, C. D., D. T. Monteith & D. M. Cooper, 2005. Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environmental Pollution 137: 55–71.

    Article  PubMed  CAS  Google Scholar 

  • Fallu, M. A., N. Allaire & R. Pienitz, 2002. Distribution of freshwater diatoms in 64 Labrador (Canada) lakes: species–environment relationships along latitudinal gradients and reconstruction models for water colour and alkalinity. Canadian Journal of Fisheries and Aquatic Sciences 59: 329–349.

    Article  Google Scholar 

  • Fredén, C., 1994. Geology. Almqvist and Wiksell International, Stockholm, Sweden.

    Google Scholar 

  • Gold, C., A. Feurtet-Mazel, M. Coste & A. Boudou, 2002. Field transfer of periphytic diatom communities to assess short-term structural effects of metals (Cd, Zn) in rivers. Water Research 36: 3654–3664.

    Article  PubMed  CAS  Google Scholar 

  • Gold, C., A. Feurtet-Mazel, M. Coste & A. Boudou, 2003. Impacts of Cd and Zn on the development of periphytic diatom communities in artificial streams located along a river pollution gradient. Archives of Environmental Contamination and Toxicology 44: 189–197.

    Article  PubMed  CAS  Google Scholar 

  • Hammer, O., D. A. T. Harper & R. P.D., 2001. PAST: paleontological statistics software package for education and data analysis. Paleontologia Electronica 4: 1–9.

    Google Scholar 

  • Hering, D., R. K. Johnson & A. Buffagni, 2006. Linking organism groups – major results and conclusions from the STAR project. Hydrobiologia 566: 109–113.

    Article  Google Scholar 

  • Hillebrand, H., D. S. Gruner, E. T. Borer, M. E. S. Bracken, E. E. Cleland, J. J. Elser, W. S. Harpole, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith, 2007. Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proceedings of the National Academy of Sciences of the United States of America 104: 10904–10909.

    Article  PubMed  CAS  Google Scholar 

  • Hirst, H., F. Chaud, C. Delabie, I. Jüttner & S. J. Ormerod, 2004. Assessing the short-term response of stream diatoms to acidity using inter-basin transplantations and chemical diffusing substrates. Freshwater Biology 49: 1072–1088.

    Article  CAS  Google Scholar 

  • Ivorra, N., S. Bremer, H. Guasch, M. H. S. Kraak & W. Admiraal, 2000. Differences in the sensitivity of benthic microalgae to Zn and Cd regarding biofilm development and exposure history. Environmental Toxicology and Chemistry 19: 1332–1339.

    Article  CAS  Google Scholar 

  • Johansson, H. & G. Persson, 2001. Svenska sjöar med höga fosforhalter. 790 naturligt eutrofa eller eutrofierade sjöar? Rapport 2001:8, Institutionen för miljöanalys, SLU, Uppsala.

  • Johnson, R. E., N. C. Tuchman & C. G. Peterson, 1997. Changes in the vertical microdistribution of diatoms within a developing periphyton mat. Journal of the North American Benthological Society 16: 503–519.

    Article  Google Scholar 

  • Johnson, R. K., D. Hering, M. T. Furse & R. T. Clarke, 2006. Detection of ecological change using multiple organism groups: metrics and uncertainty. Hydrobiologia 566: 115–137.

    Article  CAS  Google Scholar 

  • Jüttner, I., P. J. Chimonides & S. J. Ormerod, 2010. Using diatoms as quality indicators for a newly-formed urban lake and its catchment. Environmental Monitoring and Assessment 162: 47–65.

    Article  PubMed  Google Scholar 

  • Kahlert, M., C. Andrén & A. Jarlman, 2007. Bakgrundsrapport för revideringen 2007 av bedömningsgrunder för påväxt-kiselalger i vattendrag. Rapport 2007:23, Institutionen för miljöanalys, SLU, Uppsala: 37 pp.

  • Kelly, M. G. & B. A. Whitton, 1995. Trophic Diatom Index – a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7: 433–444.

    Article  Google Scholar 

  • Kernan, M., M. Ventura, P. Bitusik, A. Brancelj, G. Clarke, G. Velle, G. G. Raddum, E. Stuchlik & J. Catalan, 2009. Regionalisation of remote European mountain lake ecosystems according to their biota: environmental versus geographical patterns. Freshwater Biology 54: 2470–2493.

    Article  CAS  Google Scholar 

  • King, L., P. Barker & R. I. Jones, 2000. Epilithic algal communities and their relationship to environmental variables in lakes of the English Lake District. Freshwater Biology 45: 425–442.

    Article  Google Scholar 

  • Korsman, T., 1999. Temporal and spatial trends of lake acidity in northern Sweden. Journal of Paleolimnology 22: 1–15.

    Article  Google Scholar 

  • Krammer, K., 2000. The genus Pinnularia. In Lange-Bertalots, H. (ed.), Diatoms of Europe, Vol. 1. A.R.G. Gantner Verlag K.G., Ruggell.

    Google Scholar 

  • Krammer, K., 2002. Cymbella. In Lange-Bertalots, H. (ed.), Diatoms of Europe, Vol. 3. A.R.G. Gantner Verlag K.G., Ruggell.

    Google Scholar 

  • Krammer, K., 2003. Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella. In Lange-Bertalots, H. (ed.), Diatoms of Europe, Vol. 4. A.R.G. Gantner Verlag K.G., Ruggell.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae 1. Teil: Naviculaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa 2. Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991a. Bacillariophyceae 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Achnanthes s.l., Navicula s.str., Gomphonema. In Ettl, H., G. Gärtner, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa 2. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991b. Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa 2. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Lange, K., A. Liess, J. J. Piggott, C. R. Townsend & C. D. Matthaei, 2011. Light, nutrients and grazing interact to determine stream diatom community composition and functional group structure. Freshwater Biology 56: 264–278.

    Article  Google Scholar 

  • Lange-Bertalot, H., 2001. Navicula sensu stricto, 10 genera separated from Navicula sensu lato, Frustulia. In Lange-Bertalots, H. (ed.), Diatoms of Europe, Vol. 2. A.R.G. Gantner Verlag K.G., Ruggell.

    Google Scholar 

  • Lange-Bertalot, H. & D. Metzeltin, 1996. Indicators of Oligotrophy. Koeltz Scientific Books, Königstein, Germany.

    Google Scholar 

  • Lavoie, I., S. Campeau, F. Darchambeau, G. Cabana & P. J. Dillon, 2008. Are diatoms good integrators of temporal variability in stream water quality? Freshwater Biology 53: 827–841.

    Article  CAS  Google Scholar 

  • Lenoir, A. & M. Coste, 1996. Development of a practical diatom index of overall water quality applicable to the French National Water Board network. In Whitton, B. A. & E. Rott (eds), Use of Algae for Monitoring Rivers II. Institute fur Botanik, Universität Innsbruck, Innsbruck: 29–43.

    Google Scholar 

  • Millennium Ecosystem Report, 2005. Ecosystems and Human Well-Being: Wetlands and Water Synthesis. World Resources Institute, Washington, DC.

  • Monteith, D. T., J. L. Stoddard, C. D. Evans, H. A. De Wit, M. Forsius, T. Hogasen, A. Wilander, B. L. Skjelkvale, D. S. Jeffries, J. Vuorenmaa, B. Keller, J. Kopacek & J. Vesely, 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450: 537–539.

    Article  PubMed  CAS  Google Scholar 

  • Morin, S., M. Vivas-Nogues, T. T. Duong, A. Boudou, M. Coste & F. Delmas, 2007. Dynamics of benthic diatom colonization in a cadmium/zinc-polluted river (Riou-Mort, France). Fundamental and Applied Limnology 168: 179–187.

    Article  CAS  Google Scholar 

  • Oksanen, J., R. Kindt, P. Legendre, B. O’Hara, G. Simpson, P. Solymos, M. Stevens & H. Wagner, 2008. Vegan Community Ecology Package. R Package Version 1.15-0.

  • Pan, Y. D., R. J. Stevenson, B. H. Hill, P. R. Kaufmann & A. T. Herlihy, 1999. Spatial patterns and ecological determinants of benthic algal assemblages in Mid-Atlantic streams, USA. Journal of Phycology 35: 460–468.

    Article  Google Scholar 

  • Passy, S. I., 2007. Diatom ecological guilds display distinct and predictable behaviour along nutrient and disturbance gradients in running waters. Aquatic Botany 86: 171–178.

    Article  Google Scholar 

  • Passy, S. I. & C. A. Larson, 2011. Succession in stream biofilms is an environmentally driven gradient of stress tolerance. Microbial Ecology 62: 414–424.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, C. G. & R. J. Stevenson, 1992. Resistance and resilience of lotic algal communities – importance of disturbance timing and current. Ecology 73: 1445–1461.

    Article  Google Scholar 

  • Potapova, M. G. & D. F. Charles, 2002. Benthic diatoms in USA rivers: distributions along spatial and environmental gradients. Journal of Biogeography 29: 167–187.

    Article  Google Scholar 

  • Potapova, M. & P. B. Hamilton, 2007. Morphological and ecological variation within the Achnanthidium minutissimum (Bacillariophyceae) species complex. Journal of Phycology 43: 561–575.

    Article  Google Scholar 

  • Pouličková, A., M. Duchoslav & M. Dokulil, 2004. Littoral diatom assemblages as bioindicators of lake trophic status: a case study from perialpine lakes in Austria. European Journal of Phycology 39: 143–152.

    Article  Google Scholar 

  • R Development Core Team, 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Redfield, A. C., 1958. The biological control of chemical factors in the environment. American Scientist 46: 205–221.

    CAS  Google Scholar 

  • Renberg, I. & H. Hultberg, 1992. A paleolimnological assessment of acidification and liming effects on diatom assemblages in a Swedish lake. Canadian Journal of Fisheries and Aquatic Sciences 49: 65–72.

    Article  Google Scholar 

  • Rimet, F. & A. Bouchez, 2011. Use of diatom life-forms and ecological guilds to assess pesticide contamination in rivers: lotic mesocosm approaches. Ecological Indicators 11: 489–499.

    Article  CAS  Google Scholar 

  • Rimet, F., L. Ector, A. Dohet & H. M. Cauchie, 2004. Impacts of fluoranthene on diatom assemblages and frustule morphology in indoor microcosms. Vie Et Milieu-Life and Environment 54: 145–156.

    Google Scholar 

  • SAS, 2009. JMP Version 8.0.1. SAS institute Inc., Cary, NC, USA.

  • Schönfelder, I., J. Gelbrecht, J. Schönfelder & C. E. W. Steinberg, 2002. Relationships between littoral diatoms and their chemical environment in northeastern German lakes and rivers. Journal of Phycology 38: 66–82.

    Article  Google Scholar 

  • Soininen, J. & J. Weckström, 2009. Diatom community structure along environmental and spatial gradients in lakes and streams. Fundamental and Applied Limnology 174: 205–213.

    Article  Google Scholar 

  • Soininen, J., R. Paavola & T. Muotka, 2004. Benthic diatom communities in boreal streams: community structure in relation to environmental and spatial gradients. Ecography 27: 330–342.

    Article  Google Scholar 

  • Steinberg, C. E. W., 2003. Ecology of Humic Substances in Freshwaters. Springer, Berlin, Germany.

    Google Scholar 

  • Steinman, A. D., 1996. Effects of grazers on freshwater benthic algae. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology Freshwater Benthic Ecosystems. Academic Press, San Diego, USA: 341–373.

    Google Scholar 

  • Stevenson, R. J., 1997. Scale-dependent determinants and consequences of benthic algal heterogeneity. Journal of the North American Benthological Society 16: 248–262.

    Article  Google Scholar 

  • Stokes, P. M., 1986. Ecological effects of acidification on primary producers in aquatic systems. Water Air and Soil Pollution 30: 421–438.

    Article  Google Scholar 

  • Sucker, C. & K. Krause, 2010. Increasing dissolved organic carbon concentrations in freshwaters: what is the actual driver? iForest-Biogeosciences and Forestry 3: 106–108.

    Article  Google Scholar 

  • Swedish Environmental Protection Agency, 2006. NFS 2006:1.

  • Swedish Meteorological and Hydrological Institute, 2008. Sveriges sjöar. SMHI faktablad nr 39.

  • Ter Braak, C. J. F. & P. Smilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Ithaca, NY, USA.

  • Van Dam, H., A. Mertens & J. Sinkeldam, 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28: 117–133.

    Article  Google Scholar 

  • Van De Vijver, B. & H. Lange-Bertalot, 2008. Cymbella amelieana sp. nov. A new large Cymbella species from Swedish rivers. Diatom Research 23: 511–518.

    Article  Google Scholar 

  • Van De Vijver, B. & H. Lange-Bertalot, 2009. New and interesting Navicula taxa from western and northern Europe. Diatom Research 24: 415–429.

    Article  Google Scholar 

  • Van De Vijver, B., A. Jarlman & H. Lange-Bertalot, 2010. Four new Navicula (Bacillariophyta) species from Swedish rivers. Cryptogamie Algologie 31: 355–367.

    Google Scholar 

  • Van De Vijver, B., L. Ector, M. E. Beltrami, M. De Haan, E. Falasco, D. Hlubikova, A. Jarlman, M. Kelly, M. H. Novais & A. Z. Wojtal, 2011a. A critical analysis of the type material of Achnanthidium lineare W.Sm. (Bacillariophyceae). Algological Studies 136(137): 167–191.

    Article  Google Scholar 

  • Van De Vijver, B., A. Jarlman, H. Lange-Bertalot, A. Mertens, M. De Haan & L. Ector, 2011b. Four new European Achnanthidium species (Bacillariophyceae). Algological Studies 136(137): 193–210.

    Article  Google Scholar 

  • Vyverman, W., E. Verleyen, K. Sabbe, K. Vanhoutte, M. Sterken, D. A. Hodgson, D. G. Mann, S. Juggins, B. V. De Vijver, V. Jones, R. Flower, D. Roberts, V. A. Chepurnov, C. Kilroy, P. Vanormelingen & A. De Wever, 2007. Historical processes constrain patterns in global diatom diversity. Ecology 88: 1924–1931.

    Article  PubMed  Google Scholar 

  • Williamson, C. E., D. P. Morris, M. L. Pace & A. G. Olson, 1999. Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnology and Oceanography 44: 795–803.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Joakim Pansar and Marie Eriksson for recommending lakes to study, all people helping with sampling and data collection, Richard K. Johnson for commenting on an earlier draft of this article and two anonymous reviewers for improving the article. Funding was provided by the Swedish Environmental Protection Agency and the Swedish University of Agricultural Sciences via the Environmental Monitoring and Assessment programme (FoMA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffi Gottschalk.

Additional information

Handling editor: Judit Padisak

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottschalk, S., Kahlert, M. Shifts in taxonomical and guild composition of littoral diatom assemblages along environmental gradients. Hydrobiologia 694, 41–56 (2012). https://doi.org/10.1007/s10750-012-1128-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1128-7

Keywords

Navigation