Skip to main content
Log in

A novel quantification method for stream-inhabiting, non-diatom benthic algae, and its application in bioassessment

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Non-diatom benthic algae from 104 streams in southern California were studied. We present a novel method for quantification of non-diatom algae that seeks to improve upon two important aspects of existing methods: separate processing of macroalgae and microalgae to avoid sample blending and consequent loss of macroalgal integrity, and for better viewing, counting a well-mixed microalgal subsample on a standard microscope slide instead of using a counting chamber. Our method provided high-quality taxonomic and quantitative data with low uncertainty. A total of 260 algal taxa were recorded, 180 of which were identified to species level. The median total algal biovolume per site was 22.7 mm3 cm−2 (range: <0.001–836.9 mm3 cm−2), the median species number was 11 (range: 2–43). Total algal biovolume and species number correlated with canopy cover (negative) and water temperature (positive), but not with measured water chemistry constituents. The proportion of heterocystous cyanobacteria and Zygnemataceae were strongly negatively correlated with nitrate concentrations and TN. The proportion of red algae was negatively correlated with TP. Species optima calculations combined with indicator species analysis identified >40 algal species as potential indicators of nutrient conditions. Proposed here is a practical tool for non-diatom algal quantification that enhances its application to stream bioassessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Before incorporation into the formula, the biovolume of i-species (V a) was converted from (ml) to (μm3), and then multiplied by 4, because we analyzed one fourth of the total macroalgae collected from a total stream bottom area of substratum sampled.

  2. Before incorporation into the formula, the biovolume of i-species (V a) was corrected for the dilution factor, caused by variable sample volumes to which the 5 ml glutaraldehyde was added, by multiplying by the correction factor (V cr) calculated as follows:

    $$ V_{\text{cr}} = \left( {V_{\text{t}} - V_{\text{m}} } \right) \, \left( {V_{\text{t}} - V_{\text{m}} - 5 {\text{ ml fixative}}} \right)^{ - 1} , $$

    where V cr is the a correction factor for sample dilution with fixative (assuming 5 ml fixative was added to the sample); V t is the total initial volume in the sample vial (generally ~50 ml); V m is the volume of macroalgal fraction in sample vial (which is 0 if no macroalgae are detected).

References

  • Alverson, A. J., K. M. Manoylov & R. J. Stevenson, 2003. Laboratory sources of error for algal community attributes during sample preparation and counting. Journal of Applied Phycology 39: 1–13.

    Google Scholar 

  • APHA, 2006. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Biggs, B. J. F., 1987. Effects of sample storage and mechanical blending on the quantitative analysis of river periphyton. Freshwater Biology 18: 197–203.

    Article  Google Scholar 

  • Biggs, B. J. F. & C. Kilroy, 2007. Stream Periphyton Monitoring Manual. National Institute of Water and Atmospheric Research, Auckland, New Zealand.

    Google Scholar 

  • Birks, H. J. B., 2010. Numerical methods for the analysis of diatom assemblage data. In Smol, J. P. & E. F. Stoermer (eds), The Diatoms: Applications for the Environmental and Earth Sciences, 2nd ed. Cambridge University Press, Cambridge, MA: 23–57.

    Google Scholar 

  • Bortolus, A., 2008. Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology. Ambio 37: 114–118.

    Article  PubMed  Google Scholar 

  • Busse, L. B., J. C. Simpson & S. D. Cooper, 2006. Relationships among nutrients, algae, and land use in urbanized southern California streams. Canadian Journal of Fisheries and Aquatic Sciences 63: 2621–2638.

    Article  CAS  Google Scholar 

  • Cattaneo, A., T. Kerimian, M. Roberge & J. Marty, 1997. Periphyton distribution and abundance on substrata of different size along a gradient of stream trophy. Hydrobiologia 354: 101–110.

    Article  CAS  Google Scholar 

  • Charles, D. F., C. Knowles, & R. Davis, 2002. Protocols for the analysis of algal samples collected as part of the U.S. Geological Survey National Water-Quality Assessment Program. Patrick Center for Environmental Research Report No. 02–06. Patrick Center for Environmental Research, The Academy of Natural Sciences, Philadelphia, Pennsylvania. Accessed 25 August 2011, http://diatom.acnatsci.org/nawqa/.

  • Dodds, W. K. & D. A. Gudder, 1992. The ecology of Cladophora. Journal of Phycology 28: 415–427.

    Article  Google Scholar 

  • Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.

    Google Scholar 

  • European Communities (EC), 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. OF L 327, 22/12/2000.

  • Fetscher, A. E., L. Busse & P. R. Ode, 2009. Standard operating procedures for collecting stream algae samples and associated physical habitat and chemical data for ambient bioassessments in California. California State Water Resources Control Board Surface Water Ambient Monitoring Program (SWAMP) Bioassessment SOP 002.

  • Foerster, J., A. Gutowski & J. Schaumburg, 2004. Defining types of running waters in Germany using benthic algae: a prerequisite for monitoring according to the Water Framework Directive. Journal of Applied Phycology 16: 407–418.

    Article  Google Scholar 

  • Gotelli, N. J. & A. M. Ellison, 2004. A Primer of Ecological Statistics. Sinauer Associates, Inc., Sunderland, MA.

    Google Scholar 

  • Griffith, M. B., B. H. Hill, A. T. Herlihy & P. R. Kaufmann, 2002. Multivariate analysis of periphyton assemblages in relation to environmental gradients in Colorado Rocky Mountain streams. Journal of Phycology 38: 83–95.

    Article  Google Scholar 

  • Hering, D., C. K. Feld, O. Moog & T. Ofenböck, 2006. Cook book for the development of a Multimetric Index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia 566: 311–324.

    Article  Google Scholar 

  • Hill, W. R., 1996. Effects of light. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology—Freshwater Benthic Ecosystems. Academic Press, San Diego, CA: 121–148.

    Google Scholar 

  • Hill, B. H., A. T. Herlihy, P. R. Kaufmann, R. J. Stevenson, F. H. McCormick & C. Burch Johnson, 2000. Use of periphyton assemblage data as an index of biotic integrity. Journal of the North American Benthological Society 19: 50–67.

    Article  Google Scholar 

  • Hillebrand, H., C. D. Durselen, D. Kirschel, U. Pollinger & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • John, D. M., B. A. Whitton & A. J. Brook (eds), 2002. The Freshwater Algal Flora of the British Isles. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kelly, M. G. & B. A. Whitton, 1995. Qualitative performance of benthic diatom indices used to assess river water quality. Hydrobiologia 302: 179–188.

    Article  CAS  Google Scholar 

  • Kelly, M. G., C. Bennett, M. Coste, C. Delgado, F. Delmas, L. Denys, L. Ector, C. Fauville, M. Ferreol, M. Golub, A. Jarlman, A. Kahlert, J. Lucey, B. Ni Chathain, I. Pardo, P. Pfister, J. Picinska-Faltynowicz, C. Schranz, J. Schaumburg, J. Tison, H. van Dam & S. Vilbaste, 2009. A comparison of national approaches to setting ecological status boundaries in phytobenthos assessment for the European Water Framework Directive: results of an intercalibration exercise. Hydrobiologia 621: 169–182.

    Article  Google Scholar 

  • Komárek, J., 2003. Coccoid and colonial cyanobacteria. In Wehr, J. D. & R. G. Sheath (eds), Freshwater Algae of North America: Ecology and Classification. Academic Press, San Diego, CA: 59–116.

    Chapter  Google Scholar 

  • Komárek, J. & K. Anagnostidis, 1999. Cyanoprokaryota: Chroococcales. In Ettl, H., G. Gärtner, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa 19/1. Gustav Fischer, Sttutgart.

    Google Scholar 

  • Komárek, J. & K. Anagnostidis, 2005. Cyanoprokaryota: Oscillatoriales. In Büdel, B., G. Gärtner, L. Krienitz & M. Schagerl (eds), Süsswasserflora von Mitteleuropa 19/2. Elsevier, München.

    Google Scholar 

  • Larned, S. T., 2010. A prospectus for periphyton: recent and future ecological research. Journal of the North American Benthological Society 29: 182–206.

    Google Scholar 

  • Leland, H. V., 1995. Distribution of phytobenthos in the Yakima River basin, Washington, in relation to geology, land use, and other environmental factors. Canadian Journal of Fisheries and Aquatic Sciences 52: 1108–1129.

    Article  Google Scholar 

  • Leland, H. V. & S. D. Porter, 2000. Distribution of benthic algae in the upper Illinois River basin in relation to geology and land use. Freshwater Biology 44: 279–301.

    Article  Google Scholar 

  • Lowe, R. L. & G. D. LaLiberte, 1996. Benthic stream algae: distribution and structure. In Lamberti, G. & F. R. Hauer (eds), Stream Ecology: Field and Laboratory Exercises. Academic Press, San Diego, CA: 269–293.

    Google Scholar 

  • Lukavský, J., A. Moravcová, L. Nedbalová & O. Rauch, 2006. Phytobenthos and water quality of mountain streams in the Bohemian Forest under the influence of recreational activity. Biologia 61: 533–542.

    Article  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Marks, J. C. & M. P. Cummings, 1996. DNA sequences variation in the ribosomal internal transcribed spacer region of freshwater Cladophora species (Chlorophyta). Journal of Phycology 32: 1035–1042.

    Article  CAS  Google Scholar 

  • Palmer, C. M. & T. E. Maloney, 1954. A new counting slide for nanoplankton. American Society of Limnology and Oceanography Special Publication 21: 1–6.

    Google Scholar 

  • Pan, Y., R. J. Stevenson, B. H. Hill, P. R. Kaufmann & A. T. Herlihy, 1999. Spatial patterns and ecological determinants of benthic algal assemblages in Mid-Atlantic Highland streams. Journal of Phycology 35: 460–468.

    Article  Google Scholar 

  • Peck, D. V., A. T. Herlihy, B. H. Hill, R. M. Hughes, P. R. Kaufmann, D. Klemm, J. M. Lazorchak, F. H. McCormick, S. A. Peterson, P. L. Ringold, T. Magee, & M. Cappaert, 2006. Environmental Monitoring and Assessment Program-Surface Waters Western Pilot Study: Field Operations Manual for Wadeable Streams. U.S. Environmental Protection Agency, Washington, DC, EPA/620/R-06/003.

  • Peterson, C. G. & N. B. Grimm, 1992. Temporal variation in enrichment effects during periphyton succession in a nitrogen-limited desert stream ecosystem. Journal of the North American Benthological Society 11: 20–36.

    Article  Google Scholar 

  • Porter, S. D., 2008. Algal Attributes: An Autecological Classification of Algal Taxa Collected by the National Water-Quality Assessment Program. US Geological Survey Data Series 329. Accessed 25 August 2011http://pubs.usgs.gov/ds/ds329/.

  • Porter, S. D., D. K. Mueller, N. E. Spahr, M. D. Munn & N. M. Dubrovsky, 2008. Efficacy of algal metrics for assessing nutrient and organic enrichment in flowing waters. Freshwater Biology 53: 1036–1054.

    Article  Google Scholar 

  • Potapova, M. G., 2005. Relationships of soft-bodied algae to water-quality and habitat characteristics in U.S. Rivers. Analysis of the NAWQA national data set: Academy of Natural Sciences of Philadelphia, Patrick Center Report 05-08. Accessed date 25 August 2011, http://diatom.acnatsci.org/autecology/.

  • Potapova, M. G. & D. F. Charles, 2005. Choice of substrate in algae-based water-quality assessment. Journal of the North American Benthological Society 24: 415–427.

    Article  Google Scholar 

  • Potapova, M. G. & D. F. Charles, 2007. Diatom metrics for monitoring eutrophication in rivers of the United States. Ecological Indicators 7: 48–70.

    Article  Google Scholar 

  • Potapova, M. G., D. F. Charles, K. C. Ponader & D. M. Winter, 2004. Quantifying species indicator values for trophic diatom indices: comparison of approaches. Hydrobiologia 517: 25–41.

    Article  Google Scholar 

  • Power, M. E., M. S. Parker & W. E. Dietrich, 2008. Seasonal reassembly of river food webs under a Mediterranean hydrologic regime: floods, droughts, and impacts of fish. Ecological Monographs 78: 263–282.

    Article  Google Scholar 

  • Power, M. E., R. Lowe, P. C. Furey, J. Welter, M. Limm, J. Finlay, C. Bode, S. Chang, M. Goodrich & J. Sculley, 2009. Algal mats and insect emergence in rivers under Mediterranean climates: towards photogrammetric surveillance. Freshwater Biology 54: 2101–2115.

    Article  CAS  Google Scholar 

  • Prescott, G. W., 1951. Algae of the Western Great Lakes Area. WM.C. Brown Publishers, Dubuque, IA.

    Google Scholar 

  • R Development Core Team, 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Rott, E., P. Pfister, H. Van Dam, E. Pipp, K. Pall, N. Binder & K. Ortler, 1999. Indikationslisten für Aufwuchsalgen in Österreichischen Fliessgewässern, Teil 2: Trophieindikation sowie geochemische Präferenz, taxonomische und toxikologische Anmerkungen. Bundesministerium für Land- und Forstwirtschaft, Vienna.

    Google Scholar 

  • Schaumburg, J., C. Schranz, J. Foerster, A. Gutowski, G. Hofmann, P. Meilinger & S. Schneider, 2004. Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the Water Framework Directive. Limnologica 34: 283–301.

    Article  Google Scholar 

  • Schindler, D. W., 1990. Experimental perturbations of whole lakes as tests of hypotheses concerning ecosystem structure and function. Oikos 57: 25–41.

    Article  Google Scholar 

  • Schmidt-Kloiber, A. & R. C. Nijboer, 2004. The effect of taxonomic resolution on the assessment of ecological water quality classes. Hydrobiologia 516: 269–283.

    Article  Google Scholar 

  • Schneider, S. & E.-A. Lindstrøm, 2009. Bioindication in Norwegian rivers using non-diatomaceous benthic algae: the acidification index periphyton (AIP). Ecological Indicators 9: 1206–1211.

    Article  CAS  Google Scholar 

  • Schneider, S. & E.-A. Lindstrøm, 2011. The periphyton index of trophic status PIT: a new eutrophication metric based on non-diatomaceous benthic algae in Nordic rivers. Hydrobiologia 665: 143–155.

    Article  CAS  Google Scholar 

  • Sheath, R. G., 2003. Red algae. In Wehr, J. D. & R. G. Sheath (eds), Freshwater Algae of North America: Ecology and Classification. Academic Press, San Diego, CA: 197–221.

    Chapter  Google Scholar 

  • Sheath, R. G. & K. M. Cole, 1992. Biogeography of stream macroalgae in North America. Journal of Phycology 28: 448–460.

    Article  Google Scholar 

  • Sheath, R. G. & J. D. Wehr, 2003. Introduction to freshwater algae. In Wehr, J. D. & R. G. Sheath (eds), Freshwater Algae of North America: Ecology and Classification. Academic Press, San Diego, CA: 1–10.

    Chapter  Google Scholar 

  • Stancheva, R., J. D. Hall & R. G. Sheath, 2012. Systematics of the genus Zygnema (Zygnematophyceae, Charophyta) from Californian watersheds. Journal of Phycology 48 (in press).

  • Stevenson, R. J., 1996. Patterns of benthic algae in aquatic ecosystems. In Stevenson, R. J., M. B. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego, CA: 3–26.

    Google Scholar 

  • Stevenson, R. J. & L. L. Bahls, 1999. Periphyton protocols. In Barbour, M. T., J. Gerritsen & B. D. Snyder (eds), Rapid Bioassessment Protocols for Use in Wadeable Streams and Rivers: Periphyton, Benthic Macroinvertebrates, and Fish. EPA 841-B-99-002. United States Environmental Protection Agency, Washington: 6-1–6-22.

  • Stevenson, R. J. & J. P. Smol, 2003. Use of algae in environmental assessments. In Wehr, J. D. & R. G. Sheath (eds), Freshwater Algae of North America: Ecology and Classification. Academic Press, San Diego, CA: 775–797.

    Chapter  Google Scholar 

  • Stevenson, R. J., Y. Pan & H. van Dam, 2010. Assessing environmental conditions in rivers and streams with diatoms. In Smol, J. P. & E. F. Stoermer (eds), The Diatoms: Applications for the Environmental and Earth Sciences, 2nd ed. Cambridge University Press, Cambridge, MA: 57–85.

    Google Scholar 

  • ter Braak, C. J. F. & C. W. N. Looman, 1986. Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65: 3–11.

    Article  Google Scholar 

  • van den Hoek, C., 1963. Revision of the European species of Cladophora. E.J. Brill, Leiden.

    Google Scholar 

  • Vis, C., C. Hudon, A. Cattaneo & B. Pinel-Alloul, 1998. Periphyton as an indicator of water quality in the St Lawrence River (Québec, Canada). Environment Pollution 101: 13–24.

    Article  CAS  Google Scholar 

  • Wehr, J. D. & R. G. Sheath, 2003. Freshwater habitats of algae. In Wehr, J. D. & R. G. Sheath (eds), Freshwater Algae of North America: Ecology and Classification. Academic Press, San Diego, CA: 11–59.

    Chapter  Google Scholar 

  • Yagow, G., B. Wilson, P. Srivastava & C. C. Obropta, 2006. Use of Biological Indicators in TMDL Assessment and Implementation. Transactions of the ASABE 49: 1023–1032.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge research funding from the California State Water Resources Control Board Consolidated Grants and SWAMP Program. We thank the following people for field assistance in this project: Mariska Brady, Andrew Fields, Amanda Elliott, Evan Thomas, Christina Vanderwerken, Kimberly McArthur, and Karen McLaughlin, and Raphael Mazor, Peter Ode, and Andrew Rehn for providing the landscape analysis. We thank Lilian Busse, Eric Stein, and Martha Sutula for advice on the project, and Nadezhda Gillett for help with weighted averaging analysis. We would like to thank the associate editor, Dr Judit Padisák, and two anonymous reviewers for input that improved the manuscript. The analytical chemistry laboratories at the University of California, Santa Barbara, Marine Science Institute and the University of Georgia Odum School of Ecology performed the water chemistry analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalina Stancheva.

Additional information

Handling editor: Judit Padisak

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 311 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stancheva, R., Fetscher, A.E. & Sheath, R.G. A novel quantification method for stream-inhabiting, non-diatom benthic algae, and its application in bioassessment. Hydrobiologia 684, 225–239 (2012). https://doi.org/10.1007/s10750-011-0986-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0986-8

Keywords

Navigation