Skip to main content
Log in

Hydro-morphologically related variance in benthic drift and its importance for numerical habitat modelling

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Numerical fish-habitat modelling on various scales is considered to be state of the art in river management. However, most of the concepts applied use steady-state hydraulic parameters such as flow velocity and water depth. Herein we present analysis and discussion of the possibility of including a drift-feeding parameter (SIF) into habitat evaluations based on multiplying suitability indices. “Sources” and “sinks” of benthic drift were identified according to both the zero-crossing and hydraulic-threshold methods in an alpine gravel-bed river. Minor differences could be determined between the two methods in a well-developed riffle–pool section. Macroinvertebrates, used for simulating benthic drift, were collected by multi-habitat sampling and appraised according to their critical threshold (τ cr) for motion on the bed surface and sinking velocity (v s). The findings of the calculation of drift rates using one- (1D) and two-dimensional (2D) hydrodynamic numerical models highlight a specification of best feeding position for drift-feeding fish (i.e. brown trout, grayling) considering the SIF parameter. Riffle–pool sequences are characteristic of pristine alpine streams; our findings underline their importance as production (riffles) and consumption areas (pools) in terms of holistic river function. Moreover, the results indicate that (artificial) lateral obstruction (e.g. dams) may lead to a reduced transport rate of benthic organisms due to low bottom shear stress (<0.25 N m−2). Thus, deposition of drifting macroinvertebrates occurs in backwaters, with downstream impacts on benthic and fish communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aadland, L. P., 1993. Stream habitat types: their fish assemblages and relationship to flow. North American Journal of Fisheries Management 13: 790–806.

    Article  Google Scholar 

  • AQEM Consortium, 2002. Manual for the application of the AQEM system. A comprehensive method to assess European streams using benthic macroinvertebrates, developed for the purpose of the Water Framework Directive, Version 1.0, February 2002, http://www.aqem.de/mains/products.php.

  • Bond, N. R. & B. J. Downes, 2000. Flow-related disturbance in streams: an experimental test of the role of rock movement in reducing macroinvertebrate population densities. Marine & Freshwater Research 51: 333–337.

    Article  Google Scholar 

  • Bond, N. R. & B. J. Downes, 2003. The independent and interactive effects of fine sediment and flow on benthic invertebrate communities characteristic of small upland streams. Freshwater Biology 48: 455–465.

    Article  Google Scholar 

  • Boon, J. P., 1988. The impact of river regulation on invertebrate communities in the U.K. Regulated Rivers: Research and Management 2: 389–409.

    Article  Google Scholar 

  • Bovee, K. D., 1986. Development and evaluation of habitat suitability criteria for use in the instream flow incremental methodology. US Fish and Wildlife Service Biological Report 86: 235 pp.

  • Bovee, K. D. & T. Cochnauer, 1977. Development and evaluation of weighted criteria, probability-of-use curves for instream flow assessments: Fisheries. Instream Flow Information Paper 3. U.S.D.I. Fish and Wildlife Service, Office of Biol. Serv. FWS/OBS-77/63.

  • Bozek, M. A. & F. J. Rahel, 1992. Generality of microhabitat suitability models for young Colorado cutthroat trout (Onchorynchus clarki pleuriticus) across sites and among years in Wyoming streams. Canadian Journal of Fisheries and Aquatic Sciences 49: 552–564.

    Article  Google Scholar 

  • Brittain, J. E. & T. J. Eikeland, 1988. Invertebrate drift – a review. Hydrobiologia 166: 221–227.

    Article  Google Scholar 

  • Buffagni, A. 2001, The use of benthic invertebrate production for the definition of ecologically acceptable flows in mountain rivers. Hydro-Ecology: Linking Hydrology and Aquatic Ecology (Proceedings of Workshop HW2 held in Birmingham, UK, July 1999). IAHS Publ. no. 266: 31–41.

  • Buffagni, A. & E. Comin, 2000. Secondary production of benthic communities at the habitat scale as a tool to assess ecological integrity in mountain streams. Hydrobiologia 422/423: 183–195.

    Article  CAS  Google Scholar 

  • Cadwallander, P. L., 1974. Feeding habits of two fish species in relation to invertebrate drift in a New Zealand river. New Zealand Journal of Marine and Freshwater 9: 11–26.

    Article  Google Scholar 

  • Carling, P. A. & H. G. Orr, 2000. Morphology of riffle–pool sequences in the river Severn, England. Earth Surface Processes and Landforms 25: 369–384.

    Article  Google Scholar 

  • Cellot, B., 1996. Influence of side-arms on aquatic macro-invertebrate drift in the main channel of a large river. Freshwater Biology 35: 149–343.

    Article  Google Scholar 

  • Church, M. A., 1972. Baffin Island sandar: a study of Arctic fluvial processes. Geological Survey of Canada, Bulletin 216: 208 pp.

  • Ciborowski, J. J. H., 1987. Dynamics of drift and microdistribution of two mayfly populations: a predictive model. Canadian Journal of Fisheries and Aquatic Sciences 44: 832–845.

    Article  Google Scholar 

  • Dahl, J., 1998. Effects of a benthivorous and a drift-feeding fish on a benthic stream assemblage. Oecologia 116: 426–432.

    Google Scholar 

  • Diplas, P. & Y. Shen, 2007. Use of two- and three dimensional hydraulic models for addressing ecological aspects in stream flow. Extended Abstract of the 6th International Symposium on Ecohydraulics, Christchurch, NZ.

  • Elliott, J. M., 1967. Invertebrate drift in a Dartmoor stream. Archiv fur Hydrobiologie 63: 202–237.

    Google Scholar 

  • Fausch, K. D., 1984. Profitable stream positions for salmonids: relating specific growth rate to net energy gain. Canadian Journal of Zoology 62: 441–451.

    Article  Google Scholar 

  • Frisell, C. A., W. A. Liss, C. E. Warren & M. D. Hurley, 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management 10: 199–214.

    Article  Google Scholar 

  • Greenberg, L. A., P. Svendsen & A. Harby, 1996. Availability of microhabitat and their use by brown trout (Salmo trutta) and grayling (Thymallus thymallus) in the river Vojman, Sweden. Regulated Rivers: Research and Management 12: 287–303.

    Article  Google Scholar 

  • Guensch, G. R., T. B. Hardy & R. C. Addley, 2001. Examining feeding strategies and position choice of drift-feeding salmonids using an individual-based, mechanistic foraging model. Canadian Journal of Fisheries and Aquatic Sciences 58: 446–457.

    Google Scholar 

  • Habersack, H. M., 2000. The river-scaling concept (RSC): a basis for ecological assessments. Hydrobiologia 422: 49–60.

    Article  Google Scholar 

  • Hansen, E. A. & G. P. Closs, 2007. Temporal consistency in the long-term spatial distribution of macroinvertebrate drift along a stream reach. Hydrobiologia 575: 361–371.

    Article  Google Scholar 

  • Harby, A., M. Baptist, H. Duel, M. Dunbar, P. Goethals, A. Huusko, A. Ibbotson, H. Mader, M. L. Pedersen, S. Schmutz & M. Schneider, 2005. Cost 626 European Aquatic Modelling Network – Proceedings of the Final Meeting in Silkeborg, Denmark: 402 pp.

  • Hardy, T. B., 1998. The future of habitat modelling an instream assessment techniques. Regulated Rivers: Research and Management 14: 405–420.

    Article  Google Scholar 

  • Harvey, B. C., R. J. Nakomoto & J. L. White, 2006. Reduced stream flow lowers dry-season growth of rainbow trout in small stream. Transactions of the American Fisheries Society 135: 998–1005.

    Article  Google Scholar 

  • Hauer, C., G. Unfer, S. Schmutz & H. Habersack, 2007. The importance of morphodynamic processes at riffles used as spawning grounds during the incubation time of nase (Chondrostoma nasus). Hydrobiologia 579: 15–27.

    Article  Google Scholar 

  • Hauer, C., G. Unfer, S. Schmutz & H. Habersack, 2008. Morphodynamic effects on the habitat of Juvenile Cyprinids (Chondrostoma nasus) in a Restored Austrian Lowland River. Environmental Management 42: 279–296.

    Article  PubMed  Google Scholar 

  • Hauer, C., G. Mandlburger & H. Habersack, 2009. Hydraulically related hydro-morphological units: description based on a new conceptual mesohabitat evaluation model (MEM) using LiDAR data as geometric input. River Research and Applications 25: 29–47.

    Article  Google Scholar 

  • Hauer, C., G. Unfer, M. Tritthart, E. Formann & H. Habersack, 2011. Variability of mesohabitat characteristics in riffle–pool reaches: testing an integrative evaluation concept (FGC) for MEM-application. River Research and Applications 27: 403–430.

    Article  Google Scholar 

  • Hawkins, C. P., J. L. Kershner, P. A. Bisson, M. D. Bryant, L. M. Decker, S. V. Gregory, D. A. McCullough, C. K. Overton, G. H. Reeves, R. J. Steedman & M. K. Young, 1993. A hierarchical approach to classifying stream habitat features. Fisheries 18: 3–12.

    Article  Google Scholar 

  • Hayes, J. W. & I. G. Jowett, 1994. Microhabitat models of large drift feeding brown trout in three New Zealand Rivers. North American Journal of Fisheries Management 14: 710–725.

    Article  Google Scholar 

  • Hayes, J. W., J. D. Stark & K. A. Shearer, 2000. Development and test of a whole life-time foraging and bioenergetics growth model for drift feeding brown trout. Transactions of the American Fisheries Society 129: 315–332.

    Article  Google Scholar 

  • Heiber, M., C. T. Robinson & U. Uehlinger, 2003. Seasonal and diel patterns of invertebrate drift in different Alpine streams. Freshwater Biology 48: 1078–1092.

    Article  Google Scholar 

  • Helesic, J. & E. Sedlak, 1995. Downstream effect of impoundments on stoneflies: case study of an epipotamal reach of the Jihlava River, Czech Republic. Regulated Rivers: Research and Management 10: 39–49.

    Article  Google Scholar 

  • Hill, J. & G. H. Grossman, 1993. An energetic model of microhabitat use for rainbow trout and rosyside dace. Ecology 74: 685–698.

    Article  Google Scholar 

  • Hjulström, F., 1935. Studies of the morphological activities of rivers as illustrated by the River Fyris. Bulletin of the Geological Institution of the University of Uppsala XXV: 221–527.

    Google Scholar 

  • Holm, C. F., J. D. Armstrong & D. J. Gilvear, 2001. Investigating a major assumption of predictive instream habitat models: is water velocity preference of juvenile Atlantic salmon independent of discharge. Journal of Fish Biology 59: 1653–1666.

    Article  Google Scholar 

  • Hubert, W. A., D. D. Harris & H. A. Rhodes, 1993. Variation in the summer diet of age-0 brown trout in a regulated mountain stream. Hydrobiologia 259: 179–185.

    Article  Google Scholar 

  • Hughes, N. F., 1992. Ranking of feeding positions by drift-feeding arctic grayling (Thymallus arcticus) in dominance hierarchies. Canadian Journal of Fisheries and Aquatic Sciences 49: 1994–1998.

    Article  Google Scholar 

  • Hughes, N. F. & L. M. Dill, 1990. Position choice by drift feeding salmonids: model and test for Arctic grayling (Thymallus articus) in subartice mountain streams, interior Alaska. Canadian Journal of Fisheries and Aquatic Sciences 53: 2473–2483.

    Article  Google Scholar 

  • Hughes, N. F., J. W. Hayes, K. A. Shearer & R. G. Young, 2003. Testing a model of drift-feeding using using three-dimensional videography of wild brown trout, Salmo trutta, in a New Zealand river. Canadian Journal of Fisheries and Aquatic Sciences 60: 1462–1476.

    Article  Google Scholar 

  • Hutha, A., T. Muotka & P. Tikkaanen, 2000. Nocturnal drift of mayfly nymphs as a post-contact antipredator mechanism. Freshwater Biology 45: 33–42.

    Article  Google Scholar 

  • Jowett, I. G., 1993. A method for objectively identifying pool, run, and riffle habitats from physical measurement. New Zealand Journal of Marine and Freshwater 27: 241–248.

    Article  Google Scholar 

  • Jungwirth, M., G. Haidvogel, S. Muhar & S. Schmutz, 2003. Angewandte Fischökologie an Fließgewässern. UTB Facultas, Wien: 547 pp.

  • Jungwirth, M., O. Moog & S. Muhar, 1993. Effects of river bed restructuring on fish and benthos of a 5th order stream, Melk, Austria. Regulated Rivers: Research and Management 8: 195–204.

    Article  Google Scholar 

  • Keeley, E. R. & J. W. A. Grant, 1997. Allometry of diet selectivity in juvenile Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 54: 1894–1902.

    Google Scholar 

  • Kemp, P. S., D. J. Gilvear & J. D. Armstrong, 2006. Variation in performance reveals discharge-related energy costs for foraging Atlantic salmon (Salmo salar) parr. Ecology of Freshwater Fish 15: 565–571.

    Article  Google Scholar 

  • Lancaster, J. & A. G. Hildrew, 1993. Characterizing instream flow refugia. Canadian Journal of Fisheries and Aquatic Sciences 50: 1663–1675.

    Article  Google Scholar 

  • Leung, E. S., J. S. Rosenfeld & J. R. Bernhardt, 2009. Habitat effects on invertebrate drift in small trout streams: implications for prey availability to drift-feeding fish. Hydrobiologia 623: 113–125.

    Article  Google Scholar 

  • Mader, H., T. Steidl & R. Wimmer, 1996. Klimatologisch-hydrologische Typisierung österreichischer Fließgewässer, Umweltbundesamt. Monographien, Wien.

    Google Scholar 

  • Manly, B. F. J., L. L. McDonald, T. L. Thomas & W. P. Erickson, 2002. Resource Selection by Animals, 2nd ed. Kluwer, Boston.

    Google Scholar 

  • Melcher, A. H. & S. Schmutz, 2010. The importance of structural features for spawning habitat of nase Chondrostoma nasus (L.) and barbel Barbus barbus (L.) in a pre-Alpine river. River Systems 1: 33–42.

    Article  Google Scholar 

  • Meyer-Peter, E. & P. Müller, 1949. Formulas for bed – load transport. International Association of Hydraulic Research, 2nd Meeting, Stockholm.

  • Milhous, R. T., 1984. Instream flow values as a factor in water management. In Charbeneau, R. J. & B. P. Popkin (eds), Proceedings of Regional and State Water Resource Planning and Management. American Water Resources Association, Bethesda: 231–237.

    Google Scholar 

  • Milhous, R. T., 1986. Comparison of minimum instream flow needs. In Karamouz, M., G. R. Baumli & W. J. Black (eds), Water Forum ’86: World Water Issues in Evolution. American Society of Civil Engineers, New York: 2089–2097.

    Google Scholar 

  • Milne, J. A., 1982. Bed-material size and the riffle–pool sequence. Sedimentology 29: 267–278.

    Article  Google Scholar 

  • Montgomery, D. R. & J. M. Buffington, 1997. Channel-reach morphology in mountain drainage basins. GSA Bulletin 109: 596–611.

    Article  Google Scholar 

  • Muhar, S., Kainz, M. & M. Schwarz, 1998. Ausweisung flusstypspezifisch erhaltener Fließgewässerabschnitte in Österreich – Fließgewässer mit einem Einzugsgebiet > 500 km² ohne Bundesflüsse, Wasserwirtschaftskataster, Bundesministerium für Land- und Forstwirtschaft, pp 117.

  • Nerbonne, B. A. & B. Vondracek, 2001. Effects of local landuse on physical habitat, benthic macroinvertebrates and Fish in the Whitewater River, Minnesota, USA. Environmental Management 28: 87–99.

    Article  PubMed  CAS  Google Scholar 

  • Nestler, J. M., R. T. Milhous & J. B. Layzer, 1988. Instream habitat modeling techniques. In Gore, J. (ed.), Alternatives in Regulated River Management. CRC, Boca Raton.

    Google Scholar 

  • Nielsen, J. L., 1992. Microhabitat-specific foraging behaviour, diet, and growth of juvenile coho salmon. Transactions of the American Fisheries Society 121: 617–634.

    Article  Google Scholar 

  • Nujic, M., 1999. Praktischer Einsatz eines hochgenauen Verfahrens für die Berechnung von tiefengemittelten Strömungen. Mitteilungen des Institutes der Bundeswehr München, Neubiberg: 64 pp.

  • Parasiewicz, P., 2001. MesoHABSIM: a concept for application of instream flow models in river restoration planning. Fisheries 26: 6–13.

    Article  Google Scholar 

  • Piccolo, J. J., N. F. Hughes & M. D. Bryant, 2008. Water velocity influences prey detection and capture by drift-feeding juvenile coho salmon (Oncorhynchus kisutch) and steelhead (Oncorhynchus mykiss irideus). Canadian Journal of Fisheries and Aquatic Sciences 65: 266–275.

    Article  Google Scholar 

  • Pironneau, P., 1989. Finite Element Methods for Fluids. Masson, Paris.

    Google Scholar 

  • Raleigh, R. F., L. D. Zuckermann & P. C. Nelson, 1986. Habitat suitability index models and instream flow suitability curves: brown trout.–U.S. Department of Interior, Fish and Wildlife Service, National Ecology Center. Biological Report 82: 57–65.

    Google Scholar 

  • Rice, S. P., T. Buffi-Bélanger, J. Lancaster & I. Reid, 2008. Movements of macroinvertebrate (Potamophylax latipennis) across a gravel-bed substrate: effects of local hydraulics and micro-topography under increasing discharge. In: Habersack, H., H. Piégay & M. Rinaldi (eds), Gravel-Bed Rivers VI: From Process Understanding to River Restoration, pp. 637–658. doi:10.1006/50928-2025(07)11152-4.

  • Robinson, C. T., K. Tockner & P. Burgherr, 2002. Seasonal patterns in macroinvertebrate drift and seston transport in streams of an alpine glacial flood plain. Freshwater Biology 47: 985–993.

    Article  Google Scholar 

  • Rosenfeld, J. S., 2003. Assessing the habitat requirements of stream fishes: an overview and evaluation of different approaches. Transactions of the American Fisheries Society 132: 953–968.

    Article  Google Scholar 

  • Rosenfeld, J. S. & S. Boss, 2001. Fitness consequences of habitat use for juvenile cutthroat trout: energetic costs and benefits in pools and riffles. Canadian Journal of Fisheries and Aquatic Sciences 58: 585–593.

    Article  Google Scholar 

  • Rosenfeld, J. S. & E. Reaburn, 2009. Effects of habitat and internal prey subsidies on juvenile coho salmon growth: implications for stream productive capacity. Ecology of Freshwater Fish 18: 572–584.

    Article  Google Scholar 

  • Rosenfeld, J. S. & J. Taylor, 2009. Prey abundance, channel structure and the allometry of growth rate potential for juvenile trout. Fisheries Management and Ecology 16: 202–218.

    Article  Google Scholar 

  • Rosenfeld, J. S., M. Porter & E. Parkinson, 2000. Habitat factors affecting the abundance and distribution of juvenile cutthroat trout (Oncorhynchus clarki) and coho salmon (Oncorhynchus kisutch). Canadian Journal of Fisheries and Aquatic Sciences 57: 766–774.

    Article  Google Scholar 

  • Roussel, J. M., A. Bardonnet & A. Claude, 1999. Microhabitats of brown trout when feeding on drift and when resting in a lowland salmonid brook: effects of weighted useable area. Archiv fur Hydrobiologie 146: 413–429.

    Google Scholar 

  • Shannon, J. P., D. W. Blinn, P. L. Benenati & K. P. Wilson, 1996. Organic drift in a regulated desert river. Journal of Fisheries and Aquatic Sciences 53: 1360–1369.

    Article  Google Scholar 

  • Shields, I. A., 1936. Anwendung der Ähnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitteilungen der Preussischen Versuchsanstalt für Wasserbau und Schiffbau, Berlin (Translated from German by W. P. Ott and J. C. van Uchelen, USDA Soil Conservation Service Cooperation Laboratory, California Institute of Technology, Pasadena, CA).

  • Statzner, B. & B. Higler, 1986. Stream hydraulics as a major determinant of benthic invertebrate zonation patterns. Freshwater Biology 16: 127–139.

    Article  Google Scholar 

  • Tockner, K. & J. A. Waringer, 1997. Measuring drift during receding flood: results from an Austrian Mountain Brook (Ritrodat-Lunz). Internationale Revue der gesamten Hydrobiologie und Hydrographie 82: 1–13.

    Article  Google Scholar 

  • Unfer, G., C. Hauer & E. Lautsch, 2011. The influence of hydrology on the recruitment of brown trout in an alpine river, the Ybbs River, Austria. Ecology of Freshwater Fish 20: 438–448.

    Article  Google Scholar 

  • USACE, 2002. HEC–RAS User Manual 3.1.1. U.S. Corps of Engineers, Davis.

    Google Scholar 

  • Waringer, J. A., 1992. The drifting of invertebrates and particulate organic matter in an Austrian mountain brook. Freshwater Biology 27: 367–378.

    Article  Google Scholar 

  • Waters, T. F., 1965. Interpretation of invertebrate drift in streams. Ecology 46: 327–344.

    Article  Google Scholar 

  • Winkelmann, C., T. Petzoldt, J. E. Koop, C. D. Mathaei & J. Benndorf, 2008. Benthivorous fish reduce stream invertebrate drift in a large scale field experiment. Aquatic Ecology 42: 483–492.

    Article  Google Scholar 

  • Zeiringer, B. & S. Schmutz, in prep. Validation of multivariate approaches for determination of habitat suitability for brown trout (Salmo trutta fario) and grayling (Thymallus thymallus).

  • Zelinka, M., 1984. Production of several species of mayfly larvae. Limnologica 15: 21–41.

    Google Scholar 

Download references

Acknowledgments

The authors want to thank two anonymous reviewers for their contributions and suggestions to improve the quality of the presented study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Hauer.

Additional information

Handling editor: M. Power

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauer, C., Unfer, G., Graf, W. et al. Hydro-morphologically related variance in benthic drift and its importance for numerical habitat modelling. Hydrobiologia 683, 83–108 (2012). https://doi.org/10.1007/s10750-011-0942-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0942-7

Keywords

Navigation