Skip to main content
Log in

Molecular analyses of ostracod flocks from Lake Baikal and Lake Tanganyika

  • SPECIATION IN ANCIENT LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Ancient lakes are excellent laboratories for evolutionary research, where species can be studied in the cradle where they originated. In this article, we investigate two endemic ostracod species flocks from the two oldest lakes in the world, Lake Baikal (LB) (ca. 28 myr) and Lake Tanganyika (LT) (ca. 12 myr), with DNA sequence data. Nuclear ITS1 failed to resolve the phylogeny of both flocks. Whilst most phylogenetic relationships of the Tanganyika flock are resolved with mitochondrial COI, the Baikalian tree contains multifurications of up to seven different clades. The Tanganyikan Cyprideis flock shows higher genetic variability, which matches its higher morphological variability. A significant deviation from a constant divergence rate through time indicates that the Cytherissa flock most likely experienced explosive speciation events during its earlier history. Comparative analyses of substitution rates furthermore revealed that they are not clock-wise for COI. Ancestral Cytherissa probably radiated in LB 5–8 myr ago, around the time when the cold, oxygenated abyss was formed in LB. The Tanganyikan Cyprideis flock is almost twice as old as the Baikalian Cytherissa flock, and possibly older than LT itself, ca. 15 myr. The Cyprideis flock has survived drastic lake level changes and resulting salinity crises during its entire history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albrecht, C., S. Trajanovski, K. Kuhn, B. Streit & T. Wilke, 2006. Rapid evolution of an ancient lake species flock: freshwater limpets (Gastropoda: Ancylidae) in the Balkan lake Ohrid. Organisms Diversity and Evolution 6: 294–307.

    Article  Google Scholar 

  • Albrecht, C., C. Wolff, P. Glöer & T. Wilke, 2008. Concurrent evolution of ancient sister lakes and sister species: the freshwater gastropod genus Radix in lakes Ohrid and Prespa. Hydrobiologia 615: 157–167.

    Article  CAS  Google Scholar 

  • Alin, S. R. & A. S. Cohen, 2003. Lake-level history of Lake Tanganyika, East Africa, for the past 2500 years based on ostracode-inferred water-depth reconstruction. Palaeogeography, Paleoclimatology and Palaeoecology 199: 31–49.

    Article  Google Scholar 

  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers & D. J. Lipman, 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.

    PubMed  CAS  Google Scholar 

  • Boomer, I., U. von Grafenstein, F. Guichard & S. Bieda, 2005. Modern and Holocene sublittoral ostracod assemblages (Crustacea) from the Caspian Sea: a unique brackish, deep-water environment. Palaeogeography, Palaeoclimatology, Palaeoecology 225: 173–186.

    Article  Google Scholar 

  • Brandstätter, A., W. Salzburger & C. Sturmbauer, 2005. Mitochondrial phylogeny of the Cyprichromini, a lineage of open-water cichlid fishes endemic to Lake Tanganyika. Molecular Phylogenetics and Evolution 34: 382–391.

    Article  PubMed  Google Scholar 

  • Britton, T., C. L. Anderson, D. Jacquet, S. Lundqvist & K. Bremer, 2007. Estimating divergence times in large phylogenetic trees. Systematic Biology 56: 741–752.

    Article  PubMed  Google Scholar 

  • Bromham, L., 2002. Molecular clocks in reptiles: life history influences rate of molecular evolution. Molecular Biology and Evolution 19: 302–309.

    Article  PubMed  CAS  Google Scholar 

  • Bromham, L. & M. Woolfit, 2004. Explosive radiations and the reliability of molecular clocks: island endemic radiations as a test case. Systematic Biology 53: 758–766.

    Article  PubMed  Google Scholar 

  • Cohen, A. S., M. J. Soreghan & C. A. Scholz, 1993. Estimating the age of ancient lakes: an example from Lake Tanganyika, East African rift system. Geology 21: 511–514.

    Article  CAS  Google Scholar 

  • Cohen, A. S., K.-E. Lezzar, J.-J. Tiercelin & M. J. Soreghan, 1997. New palaeographic and lake-level reconstructions of Lake Tanganyika: implications for tectonic, climatic and biological evolution in rift lakes. Basin Research 9: 107–132.

    Article  Google Scholar 

  • Cohen, A. S., J. R. Stone, K. R. M. Beuning, L. E. Park, P. N. Reinthal, D. Dettman, C. A. Scholz, T. C. Johnson, J. W. King, M. R. Talbot, E. T. Brown & S. J. Ivory, 2007. Ecological consequences of early Late Pleistocene megadroughts in tropical Africa. Proceedings of the National Academy of Sciences, USA 104: 16422–16427.

    Article  CAS  Google Scholar 

  • Coulter, G. W., 1994. Lake Tanganyika. In Martens, K., B. Goddeeris & G. Coulter (eds), Speciation in Ancient Lakes, Advances in Limnology, Vol. 44. Sinauer Associates, Sunderland: 13–18.

    Google Scholar 

  • Danielopol, D. L., R. Olteanu, H. Löffler & P. Carbonel, 1990. Present and past geographical and ecological distribution of Cytherissa (Ostracoda, Cytherideidae). In Danielopol, D. L., P. Carbonel & J. P. Colin (eds), Cytherissa (Ostracoda) – The Drosophila of Palaeolimnology. Bulletin de l’Institut de Géologie du Bassin d’Acquitaine, Vol. 47–48. Université Bordeaux, Bordeaux: 97–116.

    Google Scholar 

  • Danley, P. & T. D. Kocher, 2001. Speciation in rapidly diverging systems: lessons from Lake Malawi. Molecular Ecology 10: 1075–1086.

    Article  PubMed  CAS  Google Scholar 

  • Duftner, N., S. Koblmüller & C. Sturmbauer, 2005. Evolutionary relationships of the Limnochromini, a tribe of benthic deep water fishes endemic to Lake Tanganyika, East Africa. Journal of Molecular Evolution 60: 277–289.

    Article  PubMed  CAS  Google Scholar 

  • Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.

    PubMed  CAS  Google Scholar 

  • Frogley, M. R., H. I. Griffiths & K. Martens, 2002. Fossil and modern Ostracoda from ancient lakes. In Holmes, J. A. & A. Chivas (eds), The Ostracoda: Applications in Quaternary Research. American Geophysical Union, Washington, DC: 167–184.

    Chapter  Google Scholar 

  • Geiger, W., 1990. Field and laboratory studies on the life cycle of Cytherissa lacustris (SARS) (Crustacea, Ostracoda) with special emphasis on the role of temperature. In Danielopol, D. L., P. Carbonel & J. P. Colin (eds), Cytherissa (Ostracoda) – The Drosophila of Palaeolimnology. Bulletin de l’Institut de Géologie du Bassin d’Acquitaine, Vol. 47–48. Université Bordeaux, Bordeaux: 191–208.

    Google Scholar 

  • Genner, M. J., O. Seehausen, D. H. Lunt, D. A. Joyce, P. W. Shaw, G. R. Carvalho & G. F. Turner, 2007. Age of cichlids: new dates for ancient lake fish radiations. Molecular Biology and Evolution 24: 1269–1282.

    Article  PubMed  CAS  Google Scholar 

  • Guindon, S. & O. Gascuel, 2003. PhyML – a simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704.

    Article  PubMed  Google Scholar 

  • Hauswald, A.-K., C. Albrecht & T. Wilke, 2008. Testing two contrasting evolutionary patterns in ancient lakes: species flock versus species scatter in valvatid gastropods of Lake Ohrid. Hydrobiologia 615: 169–179.

    Article  Google Scholar 

  • Heip, C., 1976. The life-cycle of Cyprideis torosa (Crustacea, Ostracoda). Oecologia 24: 229–245.

    Article  Google Scholar 

  • Horne, D. J. & K. Martens, 2000. Ostracoda and the four pillars of evolutionary wisdom. Hydrobiologia 419: vii–xi.

    Google Scholar 

  • Huelsenbeck, J. P. & F. Ronquist, 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.

    Article  PubMed  CAS  Google Scholar 

  • Karabanov, E., D. Williams, M. Kuzmin, V. Sideleva, G. Khursevich, A. Prokopenko, E. Solotchina, L. Tkachenko, S. Fedenya, E. Kerber, A. Gvozdkov, O. Khlustov, E. Bezrukova, P. Letunova & S. Krapivina, 2004. Ecological collapse of Lake Baikal and Lake Hovsgol ecosystems during the Last Glacial and consequences for aquatic species diversity. Palaeogeography, Palaeoclimatology, Palaeoecology 209: 227–243.

    Article  Google Scholar 

  • Kirilchik, S. V. & S. Ya. Slobodyanyuk, 1997. Evolution of the cytochrome b gene fragment from mitochondrial DNA in some Baikalian and non-Baikalian Cottoidei fishes. Molecular Biology 31: 141–148 (Translated from Molekulyarnaya Biologiya 31: 168–175).

  • Koblmüller, S., N. Duftner, C. Katango, H. Piri & C. Sturmbauer, 2005. Ancient divergence in bathypelagic Lake Tanganyika deepwater cichlids: mitochondrial phylogeny of the tribe Bathybatini. Journal of Molecular Evolution 60: 297–314.

    Article  PubMed  Google Scholar 

  • Koblmüller, S., K. M. Sefc & C. Sturmbauer, 2008. The Lake Tanganyika cichlid species assemblage: recent advances in molecular phylogenetics. Hydrobiologia 615: 5–20.

    Article  Google Scholar 

  • Kontula, T., S. V. Kirilchik & R. Väinölä, 2003. Endemic diversification of the monophyletic cottoid fish species flock in Lake Baikal explored with mtDNA sequencing. Molecular Phylogenetics and Evolution 27: 143–155.

    Article  PubMed  CAS  Google Scholar 

  • Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson & D. G. Higgins, 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.

    Article  PubMed  CAS  Google Scholar 

  • Lemey, P., M. Salemi & A.-M. Vandamme, 2009. The Phylogenetic Handbook, 2nd ed. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lezzar, K.-E., J.-J. Tiercelin, M. de Batist, A. S. Cohen, T. Bandora, P. van Rensbergen, C. le Turdu, W. Mifundu & J. Klerkx, 1996. New seismic stratigraphy and Late Tertiary history of the north Tanganyika basin, East African rift system, deduced from multichannel and high-resolution reflection seismic data and piston core evidence. Basin Research 8: 1–28.

    Article  Google Scholar 

  • Logatchev, N. A., 1993. History and geodynamics of the Lake Baikal rift in the context of the Eastern Siberian rift system: a review. Bulletin de l’Institut de Géologie du Bassin d’Acquitaine 17: 353–370.

    Google Scholar 

  • Lukin, E. I., 1986. Fauna of open Lake Baikal: its peculiarities and origin. Zoologicheskij Zhurnal 65: 666–675. (in Russian).

    Google Scholar 

  • Macdonald, K. S. III, L. Yampolsky & J. E. DuVy, 2005. Molecular and morphological evolution of the amphipod radiation of Lake Baikal. Molecular Phylogenetics and Evolution 35: 323–343.

    Article  PubMed  CAS  Google Scholar 

  • Marijnissen, S. A. E., E. Michel, S. R. Daniels, D. Erpenbeck, S. B. J. Menken & F. R. Schram, 2006. Molecular evidence for recent divergence of Lake Tanganyika endemic crabs (Decapoda: Platythelphusidae). Molecular Phylogenetics and Evolution 40: 628–634.

    Article  PubMed  CAS  Google Scholar 

  • Marijnissen, S. A. E., E. Michel, M. Kamermans, K. Olaya-Bosch, M. Kars, D. F. R. Cleary, E. E. van Loon, P. G. Rachello Domen & S. B. J. K. Menken, 2008. Ecological correlates of species differences in the Lake Tanganyika crab radiation. Hydrobiologia 615: 81–94.

    Article  Google Scholar 

  • Martens, K., 1994. Ostracod speciation in ancient lakes: a review. In Martens, K., B. Goddeeris & G. Coulter (eds), Speciation in Ancient Lakes. Advances in Limnology, Vol. 44. Sinauer Associates, Sunderland: 203–222.

    Google Scholar 

  • Martens, K., 1997. Speciation in ancient lakes. Trends in Ecology and Evolution 12: 177–182.

    Article  PubMed  CAS  Google Scholar 

  • Martens, K. & I. Schön, 1999. Crustacean biodiversity in ancient lakes: a review. In: Danielopol, D. & K. Martens (eds), Crustacean Biodiversity in Subterranean, Ancient/Deep Lakes and Deep-Sea Habitats, Crustaceana, Vol. 72. Brill, Leiden: 899–910.

  • Martens, K., G. Coulter & B. Goddeeris, 1994. Speciation in ancient lakes – 40 years after J. L. Brooks. In Martens, K., B. Goddeeris & G. Coulter (eds), Speciation in Ancient Lakes. Advances in Limnology, Vol. 44. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart: 75–96.

    Google Scholar 

  • Martens, K., K. Wouters, G. Mazepova & I. Schön, 2000. Geniation and the genus concept in ancient lakes. Verhandlungen des Internationalen Vereins der Limnologie 27: 2640–2641.

    Google Scholar 

  • Martens, K., I. Schön, C. Meisch & D. J. Horne, 2008. Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. Hydrobiologia 595: 185–193.

    Article  Google Scholar 

  • Martin, P., 1994. Lake Baikal. In Martens, K., B. Goddeeris & G. Coulter (eds), Speciation in Ancient Lakes. Advances in Limnology, Vol. 44. Sinauer Associates, Sunderland: 3–11.

    Google Scholar 

  • Mats, V. D., 1993. The structure and development of the Baikal rift depression. Earth Science Reviews 34: 81–118.

    Article  Google Scholar 

  • Mazepova, G., 1990. Rakushokovye ratchki (Ostracoda) Baikala. Nauk. Sib. Otdel. Akad. Nauk SSR, Novosibirsk: 1–470.

  • Mazepova, G., 1994. On comparative aspects of ostracod diversity in the Baikalian fauna. In Martens, K., B. Goddeeris & G. Coulter (eds), Speciation in Ancient Lakes. Advances in Limnology, Vol. 44. Sinauer Associates, Sunderland: 197–202.

    Google Scholar 

  • McGlue, M. M., K.-E. Lezzar, A. S. Cohen, J. M. Russell, J.-J. Tiercelin, A. A. Felton, E. Mbede & H. H. Nkotagu, 2008. Seismic records of late Pleistocene aridity in Lake Tanganyika, tropical East Africa. Journal of Palaeolimnology 40: 635–653.

    Article  Google Scholar 

  • Meyer, A., 1993. Phylogenetic relationships and evolutionary processes in east African cichlid fishes. Trends in Ecology and Evolution 8: 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Mooers, A. O. & P. H. Harvey, 1994. Metabolic rate, generation time, and the rate of molecular evolution in birds. Molecular Phylogenetics and Evolution 3: 344–350.

    Article  PubMed  CAS  Google Scholar 

  • Muñoz-Torres, F. A., R. C. Whatley & D. van Harten, 2006. Miocene ostracod (Crustacea) biostratigraphy of the upper Amazon Basin and evolution of the genus Cyprideis. Journal of South American Earth Sciences, New contributions on Neogene geography and depositional environments in Amazonia 21: 75–86.

    Google Scholar 

  • Nicholson, S. E., 1999. Historical and modern fluctuations of Lakes Tanganyika and Rukwa and their relationship to rainfall variability. Climatic Changes 41: 53–71.

    Article  Google Scholar 

  • Nunes Brandao, S., J. Sauer & I. Schön, 2010. Circumantarctic and eurybathid distribution in Southern Ocean benthos? A genetic test using Macrocyprididae (Crustacea, Ostracoda) as model organism. Molecular Phylogeny and Evolution. doi:10.1016/j.ympev.2010.01.014.

  • Page, R. D. M., 1996. TREEVIEW: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357–358.

    PubMed  CAS  Google Scholar 

  • Paradis, E., J. Claude & K. Strimmer, 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290.

    Article  PubMed  CAS  Google Scholar 

  • Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.

    Article  PubMed  CAS  Google Scholar 

  • Pybus, O. G. & P. H. Harvey, 2000. Testing macro-evolutionary models using incomplete molecular phylogenies. Proceedings of the Royal Society of London. Series B 267: 2267–2272.

    Google Scholar 

  • Rabosky, D. L., 2006. LASER: a maximum likelihood toolkit for detecting temporal shifts in diversification rates from molecular phylogenies. Evolutionary Bioinformatics Online 2: 257–260.

    CAS  Google Scholar 

  • Salzburger, W., A. Meyer, S. Baric, E. Verheyen & C. Sturmbauer, 2002. Phylogeny of the Lake Tanganyika cichlid species flock and its relationships to Central and East African haplochromine cichlid fish faunas. Systematic Biology 51: 113–135.

    Article  PubMed  Google Scholar 

  • Sandberg, P. A., 1964. The ostracod genus Cyprideis in the Americas. Acta Universitatis Stockholmiensis, Stockholm contributions to Geology 12: 1–178.

    Google Scholar 

  • Sarich, V. M. & A. C. Wilson, 1973. Generation time and genomic evolution in primates. Science 179: 1144–1147.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, H. A., K. Strimmer, M. Vingron & A. von Haeseler, 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18: 502–504.

    Article  PubMed  CAS  Google Scholar 

  • Scholz, C. A., J. W. Kings, G. S. Ellis, P. K. Swart, J. C. Stager & S. M. Colman, 2003. Palaeolimnology of Lake Tanganyika, East Africa, over the past 100k yr. Journal of Palaeolimnology 30: 139–150.

    Article  Google Scholar 

  • Schön, I., 2001. Primers and PCR conditions for non-marine ostracods. BioTechniques 31: 1012–1016.

    PubMed  Google Scholar 

  • Schön, I., 2007. Did Pleistocene glaciations shape genetic patterns of European ostracods? A phylogeographic analysis of two species with asexual reproduction. Hydrobiologia 575: 30–50.

    Article  Google Scholar 

  • Schön, I. & K. Martens, 2004. Adaptive, preadaptive and non-adaptive components of radiations in ancient lakes: a review. Organisms, Diversity and Evolution 4: 137–156.

    Article  Google Scholar 

  • Schön, I., R. K. Butlin, H. I. Griffiths & K. Martens, 1998. Slow molecular evolution in an ancient asexual ostracod. Proceedings of the Royal Society London, Series B 265: 235–242.

    Article  Google Scholar 

  • Schön, I., E. Verheyen & K. Martens, 2000a. Speciation in ancient lake ostracods: comparative analysis of Baikalian Cytherissa and Tanganyikan Cyprideis. Verhandlungen des Internationalen Vereins der Limnologie 27: 2674–2681.

    Google Scholar 

  • Schön, I., A. Gandolfi, E. Di Masso, V. Rossi, H. I. Griffiths, K. Martens & R. K. Butlin, 2000b. Long-term persistence of asexuality through mixed reproduction in Eucypris virens. Heredity 84: 161–169.

    Article  PubMed  Google Scholar 

  • Schön, I., K. Martens, K. Van Doninck & R. K. Butlin, 2003. Evolution in the slow lane: molecular rates of evolution in sexual and asexual ostracods (Crustacea: Ostracoda). Biological Journal of the Linnean Society 79: 93–100.

    Article  Google Scholar 

  • Schön, I., K. Martens & S. Halse, 2010. Genetic diversity in Australian ancient asexual Vestalenula (Ostracoda, Darwinulidae)–little variability down-under. Hydrobiologia 641: 59–70.

    Article  Google Scholar 

  • Schröder, H. C., S. M. Efremova, V. B. Itskovich, S. Belikov, Y. Masuda, A. Krasko, I. M. Müller & W. E. G. Müller, 2002. Molecular phylogeny of the freshwater sponges in Lake Baikal. Journal of Zoology Systematics and Evolutionary Research 40: 1–7.

    Article  Google Scholar 

  • Schultheiß, R., C. Albrecht, U. Bößneck & T. Wilke, 2008. The neglected side of speciation in ancient lakes: phylogeography of an inconspicuous mollusc taxon in lakes Ohrid and Prespa. Hydrobiologia 615: 141–156.

    Article  Google Scholar 

  • Seehausen, O., 2006. African cichlid fish: a model system in adaptive radiation research. Proceedings of the Royal Society London, Series B 273: 1987–1998.

    Article  Google Scholar 

  • Sherbakov, D. Y., 1999. Molecular phylogenetic studies on the origin of biodiversity in Lake Baikal. Trends in Ecology and Evolution 14: 92–95.

    Article  Google Scholar 

  • Sherstyankin, P. P. & L. N. Kuimova, 2006. Hydrophysical processes in Lake Baikal in its transition from subtropical to modern climates. Hydrobiologia 568(S): 253–257.

    Article  Google Scholar 

  • Smith, S. A. & M. J. Donoghue, 2008. Rates of molecular evolution are linked to life history in flowering plants. Science 322: 86–89.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D. L., 1998. PAUP. Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4.0. Sunderland Associates, Sunderland, MA.

    Google Scholar 

  • Tamura K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Likelihood, Distance, and Parsimony methods. Molecular Biology and Evolution, in press.

  • Thomas, J. A., J. J. Welch, R. Langfear & L. Bromham, 2010. A generation time effect on the rate of molecular evolution in invertebrates. Molecular Biology and Evolution 27: 1173–1180.

    Article  PubMed  CAS  Google Scholar 

  • Thorne, J. L. & H. Kishino, 2002. Divergence time and evolutionary rate estimation with multilocus data. Systematic Biology 51: 689–702.

    Article  PubMed  Google Scholar 

  • Tiercelin, J.-J. & A. Mondeuger, 1991. The geology of the Tanganyikan trough. In Coulter, G. W. (ed.), Lake Tanganyika and Its Life. Oxford University Press, London: 7–48.

    Google Scholar 

  • Verheyen, E., W. Salzburger, J. Snoeks & A. Meyer, 2003. Origin of the superflock of cichlid fishes from Lake Victoria, East Africa. Science 300: 325–329.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, P. S., D. A. Metzger & R. Higuchi, 1991. Chelex® 100 as medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10: 506–513.

    PubMed  CAS  Google Scholar 

  • West, K. & E. Michel, 2000. The dynamics of endemic diversification: molecular phylogeny suggests an explosive origin of the thiarid gastropods of Lake Tanganyika. Advances in Ecological Research 31: 331–354.

    Article  Google Scholar 

  • White, T. J., T. Bruns, S. Lee & J. Taylor, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M. A., D. G. Gelfand, J. J. Sninsky & T. J. White (eds), PCR Protocols: A Guide to Methods and Applications. Academic Press, London: 315–322.

    Google Scholar 

  • Wilke, T., R. Schultheiß & C. Albrecht, 2009. As time goes by: a simple fool’s guide to molecular clock approaches in invertebrates. American Malacological Bulletin 27: 25–45.

    Article  Google Scholar 

  • Wilson, A. B., M. Glaubrecht & A. Meyer, 2004. Ancient lakes as evolutionary reservoirs: evidence from the thalassoid gastropods of Lake Tanganyika. Proceedings of the Royal Society London, Series B 271: 529–536.

    Article  Google Scholar 

  • Wouters, K. & K. Martens, 1992. Contribution to the knowledge of Tanganyikan cytheraceans, with the description of Mesocyprideis nom.nov. (Crustacea, Ostracoda). Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen, Biologie 62: 159–166.

    Google Scholar 

  • Wouters, K. & K. Martens, 1994. Contribution to the knowledge of the Cyprideis species flock (Crustacea, Ostracoda) of Lake Tanganyika, with the description of three new species. Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen, Biologie 64: 111–128.

    Google Scholar 

  • Wouters, K. & K. Martens, 1999. Four new species of the Cyprideis species flock (Crustacea: Ostracoda) of Lake Tanganyika (East Africa). Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen, Biologie 69: 67–82.

    Google Scholar 

  • Wouters, K. & K. Martens, 2000. On the taxonomic position of the genera Archeocyprideis and Kavalacythereis of the Cyprideis species flock (Crustacea, Ostracoda) in Lake Tanganyika (East Africa), with the first description of the appendages. Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen, Biologie 70: 207–216.

    Google Scholar 

  • Wouters, K. & K. Martens, 2001. On the Cyprideis species flock (Crustacea, Ostracoda) in Lake Tanganyika, with the description of four new species. Hydrobiologia 450: 111–127.

    Article  Google Scholar 

  • Wouters, K. & K. Martens, 2007. Three new species of the Cyprideis species flock (Crustacea, Ostracoda) of Lake Tanganyika (East Africa). Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen, Biologie 77: 147–160.

    Google Scholar 

  • Wouters, K. & K. Martens, 2008. Three further new species of the Cyprideis species flock (Crustacea, Ostracoda) from Lake Tanganyika (East Africa). Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen, Biologie 78: 29–43.

    Google Scholar 

  • Xia, X. & Z. Xie, 2001. DAMBE: software package for data analysis in molecular biology and evolution. The Journal of Heredity 92: 371–373.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z., 2007. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution 24: 1586–1591.

    Article  PubMed  CAS  Google Scholar 

  • Yu, N., Q. Zhao, E. Li, S. Chen & L. Chen, 2009. An updated and annotated checklist of recent nonmarine ostracods from China. Zootaxa 2067: 29–50.

    Google Scholar 

  • Zubakov, D. Y., D. Y. Sherbakov & T. Y. Sitnikova, 1997. Phylogeny of the endemic Baicaliidae mollusks inferred from partial nucleotide sequences of the CO1 mitochondrial gene. Molecular Biology 31: 935–939.

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the “BASF Post-doc Programm der Studienstiftung des Deutschen Volkes” for providing a personal postdoc grant to IS and the ESF EUROCHORES programme Eurodiversity for funding the MOLARCH project (05_EDIV_FP237-MOLARCH). We thank our Russian colleagues, foremost M. Grachev, D. Sherbakov and O. Timoshkin, for their support during sampling and the visits of KM to Irkutsk. We also wish to thank the members of the molecular lab in Brussels for their help and assistance, and especially acknowledge E. Verheyen for his support and for many interesting discussions. As a token of our respect for her important and highly valuable work on Baikalian ostracods, we dedicate this paper to the late Galina Mazepova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isa Schön.

Additional information

Guest editors: C. Sturmbauer, C. Albrecht, S. Trajanovski & T. Wilke / Evolution and Biodiversity in Ancient Lakes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schön, I., Martens, K. Molecular analyses of ostracod flocks from Lake Baikal and Lake Tanganyika. Hydrobiologia 682, 91–110 (2012). https://doi.org/10.1007/s10750-011-0935-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0935-6

Keywords

Navigation