Skip to main content
Log in

Diatom fluxes in a tropical, oligotrophic lake dominated by large-sized phytoplankton

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Alchichica is a warm-monomictic, oligotrophic lake whose phytoplanktonic biomass is dominated by large size (average ca. 55 μm) diatoms. The fast sinking phytoplankton leads to silica, and other nutrient exportation out of the productive zone of the lake. The aim of the present study was to identify and measure the sedimentation fluxes of the diatom species and their temporal dynamics to better understand the magnitude of silica and carbon fluxes. Sediment-traps were exposed at three different depths and collected monthly. A total of 13 diatom species were observed in the traps. The maximum diatom flux was in February (304 × 106 cells m−2 day−1) related to the winter diatom bloom. The diatom silica (DSi) fluxes varied from 2.2 to 2,997 mg m−2 day−1 and the diatom carbon (DC) fluxes from 1.2 to 2,918 mg m−2 d−1. Cyclotella alchichicana was the main contributor (>98%) to the total DSi and DC fluxes. The annual diatom (15 × 109 cells m−2 year−1), DSi (147 g m−2 year−1) and DC (92 g m−2 year−1) fluxes are higher than in other aquatic ecosystems of similar or even higher trophic conditions. Our findings in Alchichica are indicative of the relevance of the phytoplankton type and size in understanding the role tropical and oligotrophic lakes play regarding silica and carbon fluxes. In addition, our results support previous findings suggesting that inland aquatic ecosystems are more important than formerly thought in processing carbon, and can, therefore, affect regional carbon balances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adame, F., J. Alcocer & E. Escobar, 2008. Size-fractionated phytoplankton biomass and its implications for the dynamics of an oligotrophic tropical lake. Freshwater Biology 53: 22–31.

    Google Scholar 

  • Alcocer, J. & U. T. Hammer, 1998. Saline lake ecosystems of Mexico. Aquatic Ecosystem Health Manage 1: 291–315.

    Google Scholar 

  • Alcocer, J. & A. Lugo, 2003. Effects of El Niño on the dynamics of Lake Alchichica, central Mexico. Geofísica Internacional 42: 523–528.

    Google Scholar 

  • Alcocer, J., A. Lugo, E. Escobar, Ma. del R. Sánchez & G. Vilaclara, 2000. Water column stratification and its implications in the tropical warm monomictic lake Alchichica, Puebla, Mexico. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 27: 3166–3169.

    Google Scholar 

  • Alcocer, J., E. Escobar & L. Oseguera, 2008. Acoplamiento pelágico-bentónico: respuesta de la zona bentónica profunda a la sedimentación del florecimiento invernal de diatomeas en el lago oligotrófico Alchichica, Puebla, México. Hidrobiológica 18: 115–122.

    Google Scholar 

  • Andreassen, I. & P. Wassmann, 1998. Vertical flux of phytoplankton and particulate biogenic matter in the marginal ice zone of the Barents Sea in May 1993. Marine Ecology Progress Series 170: 1–14.

    Article  Google Scholar 

  • Arar, E. J. & G. B. Collins, 1997. In Vitro Determination of Chlorophyll “a” and Pheophytin “a” in Marine and Freshwater Algae by Fluorescence (445.0). US Environmental Protection Agency Cincinnati, Ohio.

    Google Scholar 

  • Armienta, M. A., G. Vilaclara, S. de la Cruz-Reyna, S. Ramos, N. Ceniceros, O. Cruz, A. Aguayo & F. Arcega-Cabrera, 2008. Water chemistry of lakes related to active and inactive Mexican volcanoes. Journal of Volcanology and Geothermal Research. doi:10.1016/j.jvolgeores.2008.06.019.

  • Baines, S. B. & M. L. Pace, 1994. Sinking fluxes across lakes spanning a trophic gradient: patterns and implications for the fate of planktonic primary production. Canadian Journal of Fisheries and Aquatic Sciences 51: 25–36.

    Article  Google Scholar 

  • Bloesch, J., 1994. A review of methods used to measure sediment resuspension. Hydrobiologia 284: 13–18.

    Article  Google Scholar 

  • Blomquist, S. & C. Kofoed, 1981. Sediment trapping—a subaquatic in situ experiment. Limnology and Oceanography 26: 585–590.

    Article  Google Scholar 

  • Bootsma, H. A., R. E. Hecky, T. C. Johnson, H. J. Kling & J. Mwita, 2003. Inputs, outputs, and internal cycling of silica in a large, tropical lake. Journal of Great Lakes Research 29: 121–138.

    Article  CAS  Google Scholar 

  • Bray, D., 1995. Protein molecules as computational elements in living cells. Nature 376: 307–312.

    Article  PubMed  CAS  Google Scholar 

  • Brzezinski, M. A., 1985. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. Journal of Phycology 21: 347–357.

    Article  CAS  Google Scholar 

  • Brzezinski, M. A. & D. M. Nelson, 1995. The annual silica cycle in the Sargasso Sea near Bermuda. Deep-Sea Research I 42: 1215–1237.

    Article  CAS  Google Scholar 

  • Caballero, M., G. Vilaclara, A. Rodríguez & D. Juárez, 2003. Short-term climatic change in lake sediments from lake Alchichica, Oriental, Mexico. Geofísica Internacional 42(3): 529–537.

    CAS  Google Scholar 

  • Chellappa, N. T., J. M. Borba & O. Rocha, 2008. Phytoplankton community and physical-chemical characteristics of water in the public reservoir of Cruzeta, RN, Brazil. Brazilian Journal of Biology 68: 477–494.

    Article  CAS  Google Scholar 

  • Chu, G., J. Liu, G. Schettler, L. Li, Q. Sun, Z. Gu, H. Lu, Q. Liu & T. Liu, 2005. Sediment fuxes and varve formation in Sihailongwan, a maar lake from northeastern China. Journal of Paleolimnology 34: 311–324.

    Article  Google Scholar 

  • Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg & J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184.

    Article  CAS  Google Scholar 

  • Conley, D. J., S. S. Kilham & E. Theriot, 1989. Differences in silica content between marine and freshwater diatoms. Limnology and Oceanography 34: 205–213.

    Article  CAS  Google Scholar 

  • Dugdale, R. C. & F. P. Wilkerson, 1998. Silicate regulation of new production in the equatorial Pacific upwelling. Nature 391: 270–273.

    Article  CAS  Google Scholar 

  • Dugdale, R. C., F. P. Wilkerson & H. J. Minas, 1995. The role of silicate pump in driving new production. Deep-Sea Research I 42: 697–719.

    Article  CAS  Google Scholar 

  • Eadie, B., R. Chambers, W. Gardner & G. Bell, 1984. Sediment trap studies in Lake Michigan: resuspension and chemical fluxes in the southern basin. Journal of Great Lakes Research 10: 307–321.

    Article  CAS  Google Scholar 

  • Falcón, L., E. Escobar-Briones & D. Romero, 2002. Nitrogen fixation patterns displayed by cyanobacterial consortia in Alchichica crater-lake, Mexico. Hydrobiologia 467: 71–78.

    Article  Google Scholar 

  • Filonov, A. & J. Alcocer, 2002. Internal waves in a tropical crater lake: Alchichica, Central Mexico. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 28: 1857–1860.

    Google Scholar 

  • Filonov, A., I. Tereshchenko & J. Alcocer, 2006. Dynamic response to mountain breeze circulation in Alchichica, a crater lake in Mexico. Geophysical Research Letters 33: L07404. doi:10.1029/2006GL025901.

    Article  Google Scholar 

  • Furlong, E. T. & R. Carpenter, 1988. Pigment preservation and remineralization in oxic coastal marine sediments. Geochimica et Cosmochimica Acta 52: 87–99.

    Article  CAS  Google Scholar 

  • Galat, D. L., E. L. Lider, S. Vigg & S. R. Robertson, 1981. Limnology of a large, deep, North American terminal lake, Pyramid Lake, Nevada, U.S.A. Hydrobiologia 82: 281–317.

    Article  Google Scholar 

  • García, E., 1988. Modificaciones al sistema de clasificación climática de Köppen: (para adaptarlo a las condiciones de la República Mexicana), 4th ed. Offset Larios, México.

    Google Scholar 

  • Garg, A. & P. Bhaskar, 2000. Fluxes of diatoms in the Dona Paula Bay, West coast of India. Journal of Plankton Research 22: 2125–2136.

    Article  Google Scholar 

  • Gibson, C. E., G. Wang & R. H. Foy, 2000. Silica and diatom growth in Lough Neagh: the importance of internal recycling. Freshwater Biology 45: 285–293.

    Article  CAS  Google Scholar 

  • Guildford, S. J., H. A. Bootsma, W. D. Taylor & R. E. Hecky, 2007. High variability of phytoplankton photosynthesis in response to environmental forcing in oligotrophic Lake Malawi/Nyasa. Journal of Great Lakes Research 33(1): 170–185.

    Article  CAS  Google Scholar 

  • Haberyan, K. & R. Hecky, 1987. The late pleistocene and holocene stratigraphy and paleolimnology of Lakes Kivu and Tanganyika. Palaeogeography, Palaeoclimatology, Palaeoecology 61: 169–197.

    Article  CAS  Google Scholar 

  • Håkanson, L. & M. Jansson, 2002. Principles of Lake Sedimentology. Blackburn Press, Caldwell.

    Google Scholar 

  • Haynes, R., 1988. An Introduction to the blue-green algae (Cyanobacteria) with an emphasis on nuisance species. North American Lake Management Society, Washington, DC.

    Google Scholar 

  • Interlandi, S. J., S. S. Kilham & E. C. Theriot, 1999. Responses of phytoplankton to varied resource availability in large lakes of the Greater Yellowstone ecosystem. Limnology and Oceanography 44: 668–682.

    Article  CAS  Google Scholar 

  • Kato, M., Y. Tanimura, K. Matzuoka & H. Fukusawa, 2003. Planktonic diatoms from sediment traps in Omura Bay, western Japan with implications for ecological and taphonomic studies of coastal marine environments. Quaternary International 105: 25–31.

    Article  Google Scholar 

  • Kempe, S. & H. Schaumburg, 1996. Cap. 18: Vertical particle flux in Lake Baikal. In Ittekkot, V., P. Schäfer, S. Honjo & P. J. Depetris (eds), Particle Flux in the Ocean. John Wiley & Sons Ltd., New York: 325–355.

  • Kilham, P. & S. Soltau, 1990. Endless summer: internal loading processes dominate nutrient cycling in tropical lakes. Freshwater Biology 23: 379–389.

    Article  Google Scholar 

  • Kirkwood, D. S., 1994. Sanplus segmented flow analyzer and its applications. Seawater Analysis. Skalar Co., Amsterdam.

    Google Scholar 

  • Lange, C. B., U. F. Treppke & G. Fischer, 1994. Seasonal diatoms fluxes in the Guinea Basin and their relationships to trade winds, hydrography and upwelling events. Deep-Sea Research I 41: 859–878.

    Article  Google Scholar 

  • Leblanc, K. & D. A. Hutchins, 2005. New applications of a biogenic silica deposition fluorophore in the study of oceanic diatoms. Limnology and Oceanography: Methods 3: 462–476.

    Article  CAS  Google Scholar 

  • Lee, C., S. G. Wakeham & J. Hedges, 1988. The measurement of oceanic particle flux: Are “swimmers” a problem? Oceanography 1: 34–36.

    Google Scholar 

  • Legendre, L., 1999. Environmental fate of biogenic carbon in lakes. Japanese Journal of Limnology 60: 1–10.

    Article  CAS  Google Scholar 

  • Legendre, L. & F. Rassoulzadegan, 1996. Food-web mediated export of biogenic carbon in oceans: environmental control. Marine Ecology Progress Series 145: 179–193.

    Article  Google Scholar 

  • Leland, H. V. & W. R. Berkas, 1998. Temporal variation in plankton assemblages and physicochemistry of Devils Lake, North Dakota. Hydrobiologia 377: 57–71.

    Article  CAS  Google Scholar 

  • Lewis, W. M., 1996. Tropical lakes: how latitude makes a difference. In Schiemer F. & K. T. Boland (eds), Academic Publishing, Amsterdam: 43–64.

  • Lewis, W. M., 2002. Causes of the high frequency of nitrogen limitation in tropical lakes. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 28: 210–213.

    Google Scholar 

  • Oliva, M. G., A. Lugo, J. Alcocer, L. Peralta & M. R. Sánchez, 2001. Phytoplankton dynamics in a deep, tropical, hyposaline lake. Hydrobiologia 466: 299–306.

    Article  CAS  Google Scholar 

  • Oliva, M. G., A. Lugo, J. Alcocer & E. Cantoral-Uriza, 2006. Cyclotella alchichicana sp. nov. from a saline lake. Diatom Research 21: 81–89.

    Article  Google Scholar 

  • Oliva, M. G., A. Lugo, J. Alcocer & E. Cantoral-Uriza, 2008. Morphological study of Cyclotella choctawhatcheeana Prasad (Stephanodiscaceae) from a saline Mexican lake. Saline Systems 4: 17.

    Article  PubMed  Google Scholar 

  • Oliva, M. G., A. Lugo, J. Alcocer, L. Peralta & L. A. Oseguera, 2009. Planktonic bloom-forming Nodularia in the saline Lake Alchichica, Mexico. In Oren, A., D. L. Naftz, & W. A. Wurtsbaugh (eds), Saline Lakes Around the World: Unique Systems with Unique Values. Natural Resources and Environmental Issues XV. The S. J. and Jessie E. Quinney Natural Resources Research Library, published in conjunction with the Utah State University College of Natural Resources, Utah: 121–126.

  • Padisák, J., W. Scheffler, C. Sípos, P. Kasprzak, R. Koschel & L. Krienitz, 2003. Spatial and temporal pattern of development and decline of the spring diatom populations in Lake Stechlin in 1999. Archiv für Hydrobiologie, Special Issues Advances in Limnology 58: 135–155.

    Google Scholar 

  • Passow, U., 1991. Species-specific sedimentation and sinking velocities of diatoms. Marine Biology 108: 449–455.

    Article  Google Scholar 

  • Passow, U., 2000. Formation of transparent exopolymer particles (TEP) from dissolved precursor material. Marine Ecology Progress Series 192: 1–11.

    Article  CAS  Google Scholar 

  • Passow, U., A. L. Alldredge & B. E. Logan, 1994. The role of particulate carbohydrate exudates in the flocculation of diatom blooms. Deep-Sea Research I 41: 335–357.

    Article  CAS  Google Scholar 

  • Passow, U. & A. L. Alldredge, 1995. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnology and Oceanography 40: 1326–1335.

    Article  CAS  Google Scholar 

  • Pilskaln, C. H., 2004. Seasonal and interannual particle export in an African rift valley lake: A 5 year record from Lake Malawi, Southern East Africa. Limnology and Oceanography 49: 964–977.

    Article  CAS  Google Scholar 

  • Poister, D. & D. Armstrong, 2003. Seasonal sedimentation trends in a mesotrophic lake: influence of diatoms and implications for phosphorus dynamics. Biogeochemistry 65: 1–13.

    Article  CAS  Google Scholar 

  • Prasad, A. K. S. K., J. A. Nienow & R. J. Livingston, 1990. The genus Cyclotella (Bacillariophyta) in Choctawhatchee Bay, Florida, with special reference to C. striata and C. choctawhatcheeana sp. nov. Phycologia 29: 418–436.

    Article  Google Scholar 

  • Ramírez-Olvera, M. A., J. Alcocer, M. Merino & A. Lugo, 2009. Nutrient limitation in a tropical saline lake: a microcosm experiment. Hydrobiologia 626: 5–13.

    Article  Google Scholar 

  • Redfield, A., 1958. The biological control of chemical factors in the environment. American Scientist 46: 205–221.

    CAS  Google Scholar 

  • Redfield, A. C., B. H. Ketchum & F. A. Richards, 1963. The influence of organisms on the composition of seawater. In Hill, M. N. (ed.), The Sea, Vol. 2. Interscience, New York: 26–77.

  • Reynolds, C. S., 1984. Phytoplankton periodicity: the interactions of form, function and environment variability. Freshwater Biology 14: 111–142.

    Google Scholar 

  • Reynolds, C. S., 1999. Non-determinism to probability, or N:P in the community ecology of phytoplankton. Nutrient ratios. Archiv für Hydrobiologie 146: 23–35.

    CAS  Google Scholar 

  • Reynolds, C. S., H. Morison & C. Butterwick, 1982. The sedimentary flux of phytoplankton in the south basin of Windermere. Limnology and Oceanography 27: 1162–1175.

    CAS  Google Scholar 

  • Rocha, O. & A. Duncan, 1985. The relationship between cell carbon and cell volume in freshwater algal species used in zooplanktonic studies. Journal of Plankton Research 7: 279–294.

    Article  Google Scholar 

  • Round, F. E., R. M. Crawford & D. G. Mann, 1990. The diatoms. Biology and Morphology of the Genera. Cambridge University Press.

  • Rushforth, S. R. & J. R. Johansen, 1986. The inland Chaetoceros (Bacillariophyceae) species of North America. Journal of Phycology 22: 441–448.

    Article  Google Scholar 

  • Sas, H. (Coord), 1989. Lake restoration by reduction of nutrient loading: Expectations, experiences, extrapolations. Academia Verlag Richarz, St. Augustin: 497 pp.

  • Scavia, D. & G. Fahnenstiel, 1987. Dynamics of Lake Michigan phytoplankton: mechanisms controlling epilimnetic communities. Journal of Great Lakes Research 13: 103–120.

    Article  Google Scholar 

  • Shannon, C. & W. Weaver, 1949. The mathematical theory of communication. University Illinois Press, Urbana, Illinois.

    Google Scholar 

  • Smetacek, V., 2000. Oceanography: the giant diatom dump. Nature 406: 574–575. doi:10.1038/35020665.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, U., 1984. Sedimentation of principal phytoplankton species in Lake Constance. Journal of Plankton Research 6: 1–14.

    Article  Google Scholar 

  • Søndergaard, M., J. P. Jensen & E. Jeppesen, 1999. Internal phosphorus loading in shallow Danish lakes. Hydrobiologia 408(409): 145–152.

    Article  Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Bulletin of Fisheries Research Board of Canada 167: 1–311.

    Google Scholar 

  • Utermöhl, H., 1958. Zur vervollkommung der quantitativen phytoplankton methodick. Mitteilungen-Internationale Vereinigung für Limnlogie 9: 1–38.

    Google Scholar 

  • Vilaclara, G., M. Chávez, A. Lugo, H. González & M. Gaytán, 1993. Comparative description of crater-lakes basic chemistry in Puebla state, Mexico. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 25: 435–440.

    CAS  Google Scholar 

  • Webster, I. T., 1990. Effect of wind on the distribution of phytoplankton cells in lakes. Limnology and Oceanography 35: 989–1001.

    Article  Google Scholar 

  • Wetzel, R., 2001. Limnology. Lake and River Ecosystems, 3rd ed. Academic Press, London.

    Google Scholar 

  • Williams, W. D., A. J. Boulton & R. G. Tafee, 1990. Salinity as determinant of salt lake fauna: a question of scale. Hydrobiologia 197: 257–266.

    Article  CAS  Google Scholar 

  • Xu, J., A. Y. Ho, K. Yin, X. Yuan, D. M. Anderson, J. H. Lee & P. J. Harrison, 2008. Temporal and spatial variations in nutrient stoichiometry and regulation of phytoplankton biomass in Hong Kong waters: influence of the Pearl River outflow and sewage inputs. Marine Pollution Bulletin 57: 335–348.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by Consejo Nacional de Ciencia y Tecnología (CONACyT) project 103332, Dirección General de Asuntos del Personal Académico de la UNAM (DGAPA) PAPIIT project IN221009, and Programa de Apoyo a los Profesores de Carrera para la Formación de Grupos de Investigación, FES Iztacala, UNAM (PAPCA) project 2009–2010. Thanks are due to A. Rodríguez and L. Peralta (FES-Iztacala, UNAM) for their field support and S. Castillo (Laboratorio de Biogeoquímica, Instituto de Ciencias del Mar y Limnología, UNAM) who carried out the nutrient analysis. We deeply appreciate the comments and suggestions of Dr. Judit Padisák (University of Pannonia, Veszprém) and two anonymous referees that greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Alcocer.

Additional information

Handling editor: Judit Padisak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ardiles, V., Alcocer, J., Vilaclara, G. et al. Diatom fluxes in a tropical, oligotrophic lake dominated by large-sized phytoplankton. Hydrobiologia 679, 77–90 (2012). https://doi.org/10.1007/s10750-011-0853-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0853-7

Keywords

Navigation