Skip to main content
Log in

Subsurface chlorophyll maximum (SCM) location and extension in the water column as governed by a density interface in the strongly stratified Kattegat estuary

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The aims of the study were to analyse the relations between the physics of a water column and the location of the subsurface chlorophyll maximum (SCM) peaks in a strongly stratified estuary. Could extension and depth location of the SCM be explained by the physical conditions in terms of water column stratification and density interface? Questions were addressed by obtaining data on water column density (CTD), chlorophyll a (Chl a), nutrients, (F v/F m), σPSII and K d(PAR) at 15 positions along a 575 km transect in the Kattegat estuary. Results showed that the estuary was strongly stratified with mixed surface and bottom layers intercepted by a layer where density increased with depth. The SCM occurred only in this density interface, and widths of SCM and density interface were highly correlated. The surface waters were nearly depleted of inorganic nitrogen, phosphate and silicate though with significant higher concentrations in the waters below the interface. The Chl a concentration was comparatively higher in the SCM peak as well as maximum quantum efficiency (F v/F m) and functional cross sectional area (σPSII). The SCM was maintained at very low light levels and by a diapycnal nitrogen flux, with a stratified water column and nutrient depleted surface waters as predecessors. It was concluded that the depth location and vertical extension of the SCM in the estuary were closely linked to the physical structure of the water column in terms of density interface and stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aiken, J., J. Fishwick, G. Moore & K. Pemberton, 2004. The annual cycle of phytoplankton photosynthetic quantum efficiency, pigment composition and optical properties in the western English Channel. Journal of Marine Biological association UK 84: 301–313.

    Article  CAS  Google Scholar 

  • Anderson, G. C., 1969. Subsurface chlorophyll maximum in the Northeast Pacific Ocean. Limnology and Oceanography 14: 386–391.

    Article  CAS  Google Scholar 

  • Babin, M., A. Morel, H. Claustre, B. Annick, Z. Kolber & G. Falkowski, 1996. Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and ologotrophic marine systems. Deep-Sea Research I 43: 1241–1272.

    Article  CAS  Google Scholar 

  • Banse, K., 1987. Clouds, deep chlorophyll maxima and the nutrient supply to the mixed layer of stratified water bodies. Journal of Plankton Research 9: 1031–1036.

    Article  CAS  Google Scholar 

  • Bjørnsen, P. K., H. Kaas, H. Kaas, T. G. Nielsen, M. Olesen & K. Richardson, 1993. Dynamics of a subsurface phytoplankton maximum in the Skagerrak. Marine Ecology Progress Series 95: 279–294.

    Article  Google Scholar 

  • Burnett, L., D. Moorhead, I. Hawes & C. Howard-Williams, 2006. Environmental factors associated with deep chlorophyll maxima in dry valley lakes, South Victoria Land, Antarctica. Arctic, Antarctic, and Alpine Research 38: 179–189.

    Article  Google Scholar 

  • Cullen, J. J., 1982. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Canadian Journal of Fisheries and Aquatic Sciences 39: 791–803.

    Article  CAS  Google Scholar 

  • Cullen, J. J. & R. W. Eppley, 1981. Chlorophyll maximum layers of the Southern California Bight and possible mechanisms of their formation and maintenance. Oceanologica Acta 4: 23–32.

    Google Scholar 

  • Djurfeldt, L., 1994. The influence of physical factors on a subsurface chlorophyll maximum in an upwelling area. Estuarine, Coastal, and Shelf Science 39: 389–400.

    Article  Google Scholar 

  • Dyer, K. R., 1997. Estuaries—A Physical Introduction. Wiley, Chichester: 195 pp.

  • Fahnenstiel, G. L. & J. M. Glime, 1983. Subsurface chlorophyll maximum and associated Cyclotella pulse in Lake Superior. International Revue Geschicte Hydrobiologie 68: 605–616.

    Article  CAS  Google Scholar 

  • Falkowski, P. G. & Z. S. Kolber, 1995. Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans. Australian Journal of Plant Physiology 22: 341–355.

    Article  Google Scholar 

  • Falkowski, P. G. & J. A. Raven, 2007. Aquatic Photosynthesis, 2nd ed. Princeton University Press, Princeton: 484 pp.

  • Figuerias, F. G. & Y. Pazos, 1991. Microplankton assemblages in three Rías Baixas (Vigo, Arosa and Muros, Spain) with a subsurface chlorophyll maximum: their relationships to hydrography. Marine Ecology Progress Series 76: 219–233.

    Article  Google Scholar 

  • Granéli, E., K. Wallström, U. Larsson, W. Granéli & R. Elmgren, 1990. Nutrient limitation of primary production in the Baltic Sea area. AMBIO 19: 142–151.

    Google Scholar 

  • Gustafsson, B. G., 2000. Time-dependent modeling of the Baltic entrance area. 1 Quantification of circulation and residence times in the Kattegat and the straits of the Baltic sill. Estuaries 23: 231–252.

    Article  Google Scholar 

  • Harding, L. W., A. Magnuson & M. E. Mallonee, 2005. SeaWiFS retrievals of chlorophyll in Chesapeake Bay and the mid-Atlantic bight. Estuarine, Coastal and Shelf Science 62: 75–94.

    Article  CAS  Google Scholar 

  • Heilman, J., K. Richardson & G. Ærtebjerg, 1994. Annual distribution and activity of phytoplankton in the Skagerrak/Kattegat frontal region. Marine Ecology Progress Series 112: 213–223.

    Article  Google Scholar 

  • Hense, I. & A. Beckmann, 2008. Revisiting subsurface chlorophyll and phytoplankton distributions. Deep-Sea Research I 55: 1193–1199.

    Article  Google Scholar 

  • Hodges, B. A. & D. L. Rudnick, 2004. Simple models of steady deep maxima in chlorophyll and biomass. Deep-Sea Research I 51: 999–1015.

    Article  CAS  Google Scholar 

  • Jacobsen, J. P., 1913. Beiträge zur Hydrographie der Dänischen Gewässer. Kommisionen for Meddelelser om Havundersøgelser, Serie Hydrografi 2: 1–94.

    Google Scholar 

  • Kahru, M., A. Aitsam & J. Elken, 1981. Coarse-scale spatial structure of phytoplankton standing crop in relation to hydrography in the open Baltic Sea. Marine Ecology Progress Series 5: 311–318.

    Article  Google Scholar 

  • Karlson, B., L. Edler, W. Graneli, E. Sahlsten & M. Kuylenstierna, 1996. Subsurface chlorophyll maxima in the Skagerrak. Processes and plankton community structure. Journal of Sea Research 35: 139–158.

    Article  Google Scholar 

  • Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge: 401 pp.

  • Klausmeier, C. A. & E. Lichtman, 2004. Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnology and Oceanography 49: 1463–1470.

    Article  Google Scholar 

  • Kolber, Z. & P. G. Falkowski, 1993. Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnology and Oceanography 38: 1646–1665.

    Article  CAS  Google Scholar 

  • Kolber, Z., O. Prásil & P. G. Falkowski, 1998. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochimica et Biophysica Acta 1367: 88–106.

    Article  PubMed  CAS  Google Scholar 

  • Kononen, K., S. Hällfors, M. Kokkonen & H. Kousa, 1998. Development of a subsurface chlorophyll maximum at the entrance to the Gulf of Finland, Baltic Sea. Limnology and Oceanography 43: 1089–1106.

    Article  CAS  Google Scholar 

  • Kononen, K., M. Huttunen, S. Hällfors, P. Gentien, M. Lunven, T. Huttula, J. Laanements, M. Lilover, J. Pevelson & A. Stips, 2003. Development of a deep chlorophyll maximum of Heterocapsa triquetra (Ehrenb), at the entrance to the Gulf of Finland. Limnology and Oceanography 48: 594–607.

    Article  Google Scholar 

  • Kullenberg, G., 1977. Entrainment velocity in natural stratified shear flow. Estuarine, Coastal and Marine Science 5: 329–338.

    Article  Google Scholar 

  • Letelier, R. M., D. M. Karl, M. R. Abbott & R. R. Bidigare, 2004. Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific subtropical Gyre. Limnology and Oceanography 49: 508–519.

    Article  CAS  Google Scholar 

  • Lichtman, E., C. A. Klausmeier & P. Bossard, 2004. Phytoplankton nutrient competition under dynamic light regimes. Limnology and Oceanography 49: 1457–1462.

    Article  Google Scholar 

  • Lund-Hansen, L. C., 2006. Development and dynamics of a coastal sub-surface phytoplankton bloom in the southwest Kattegat, Baltic Sea. Oceanologia 48: 1–14.

    Google Scholar 

  • Lund-Hansen, L. C. & T. Vang, 2004. An inflow and intrusion event in the Little Belt at the North Sea-Baltic Sea transition and a related sub-surface bloom of the Pseudo-nitzschia pseudodelicatissima. Estuarine, Coastal and Shelf Science 45: 1–12.

    Google Scholar 

  • Lund-Hansen, L. C., P. Skyum & C. Christiansen, 1994. Modes of stratification in a semi-enclosed bay at the North Sea-Baltic Sea transition. Estuarine, Coastal and Shelf Science 42: 45–54.

    Article  Google Scholar 

  • Lund-Hansen, L. C., J. Valeur, M. Pejrup & A. Jensen, 1997. Sediment fluxes, resuspension and accumulation rates at two wind-exposed coastal sites and in a sheltered bay. Estuarine, Coastal, and Shelf Science 44: 521–531.

    Article  Google Scholar 

  • Lund-Hansen, L. C., P. C. D. A. Ayala & A. F. Reglero, 2006. Bio-optical properties and development of a sub-surface chlorophyll maxima (SCM) in southwest Kattegat, Baltic Sea. Estuarine, Coastal, and Shelf Science 68: 372–378.

    Article  Google Scholar 

  • Nielsen, T. G., T. Kiørboe & A. Bjørnsen, 1990. Effects of the Chrysochromulina polylepis bloom on the planktonic community. Marine Ecology Progress Series 62: 21–35.

    Article  Google Scholar 

  • Odate, T. & K. Furuya, 1998. Well-developed subsurface chlorophyll maximum near Komahashi No. 2 seamount in the summer of 1991. Deep-Sea Research 45: 1595–1607.

    Article  CAS  Google Scholar 

  • Parslow, J. S., P. W. Boyd & S. R. Rintoul, 2001. A persistent subsurface chlorophyll maximum in the Interpolar Frontal Zone south of Australia: Seasonal progression and implications for phytoplankton-light-nutrient interactions. Journal of Geophysical Research-Oceans 106(C12): 31543–31557.

    Article  Google Scholar 

  • Revelante, N. & M. Gilmartin, 1973. Some observations of the chlorophyll maximum and primary production in the eastern North Pacific. Internationale Revue der Gesamten Hydrobiologie 58: 819–834.

    Article  CAS  Google Scholar 

  • Richardson, K. & A. Christoffersen, 1991. Seasonal distribution and production of phytoplankton in the southern Kattegat. Marine Ecology Progress Series 78: 217–227.

    Article  Google Scholar 

  • Richardson, K., A. W. Visser & F. B. Pedersen, 2000. Subsurface phytoplankton blooms fuel pelagic production in the North Sea. Journal of Plankton Research 22: 1663–1671.

    Article  Google Scholar 

  • Richardson, K., B. Rasmussen, T. Bunk & L. T. Mouritsen, 2003. Multiple subsurface phytoplankton blooms occurring simultaneously in the Skagerrak. Journal of Plankton Research 25: 799–813.

    Article  CAS  Google Scholar 

  • Ross, O. N. & J. Sharpless, 2007. Phytoplankton motility and competition for nutrients in the thermocline. Marine Ecology Progress Series 347: 21–38.

    Article  CAS  Google Scholar 

  • Ross, O. N. & J. Sharpless, 2008. Swimming for survival: a role of phytoplankton motility in a stratified turbulent environment. Journal of Marine Systems 70: 248–262.

    Article  Google Scholar 

  • Ryan, J. P., M. A. McManus & J. M. Sullivan, 2010. Interacting physical, chemical and biological forcing of phytoplankton thin-layer variability in Monterey Bay, California. Continental Shelf Research 30: 7–16.

    Article  Google Scholar 

  • Rydberg, L., G. Ærtebjerg & L. Edler, 2006. Fifty years of primary production measurements in the Baltic entrance region, trends and variability in relation to land-based input of nutrients. Journal of Sea Research 56: 1–16.

    Article  CAS  Google Scholar 

  • Seppälä, J. & M. Balode, 1999. Spatial distribution of phytoplankton in the Gulf of Riga during spring and summer stages. Journal of Marine Systems 23: 51–67.

    Article  Google Scholar 

  • Sharpless, J., C. M. Moore, T. R. Rippeth, P. M. Holligan, D. J. Hydes, N. R. Fisher & J. H. Simpson, 2001. Phytoplankton distribution and survival in the thermocline. Limnology and Oceanography 46: 486–496.

    Article  Google Scholar 

  • Skyum, P., C. Christiansen, L. C. Lund-Hansen & J. Nielsen, 1996. Advection-induced oxygen variability in the North Sea-Baltic Sea transition. Hydrobiologia 282: 65–77.

    Google Scholar 

  • Smyth, T. J., K. L. Pemberton, J. Aiken & R. J. Geider, 2004. A methodology to determine primary production and phytoplankton photosynthetic parameters from fast repetition rate fluorometry. Journal of Plankton Research 26: 1337–1359.

    Article  CAS  Google Scholar 

  • Suggett, D. L., H. L. MacIntyre & R. J. Geider, 2004. Evaluation of biophysical and optical determinations of light absorption by photosystem II in phytoplankton. Limnology and Oceanography Methods 2: 316–332.

    Article  Google Scholar 

  • Takahashi, M. & T. Hori, 1984. Abundance of picoplankton in the subsurface chlorophyll maximum layer in subtropical and tropical waters. Marine Biology 79: 177–186.

    Article  CAS  Google Scholar 

  • Weston, K., L. Fernand, D. K. Mills, R. Delahunty & J. Brown, 2005. Primary production in the deep chlorophyll maximum of the central North Sea. Journal of Plankton Research 27: 909–922.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present data set was obtained with cruises onboard the “Gunnar Thorson” from the Royal Danish Navy and captain and crew are acknowledged for good cooperation, and thanks to Gunni Ærtebjerg, National Environmental Institute, for permissions to join the cruises. The Danish Natural Science Foundation financially supported the study—Contract Nr. SNF 1424-28808.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Chresten Lund-Hansen.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lund-Hansen, L.C. Subsurface chlorophyll maximum (SCM) location and extension in the water column as governed by a density interface in the strongly stratified Kattegat estuary. Hydrobiologia 673, 105–118 (2011). https://doi.org/10.1007/s10750-011-0761-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0761-x

Keywords

Navigation