Skip to main content
Log in

Characterisation of the potamal Danube River and the Delta: connectivity determines indicative macrophyte assemblages

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The complexity of water bodies in the eu-potamal river corridor and the main delta channels of the Romanian Danube is exemplified by the macrophyte vegetation. Two hypotheses provided the background for our study: (a) is the macrophyte vegetation of large, permanently connected branches significantly separated from that of the main river channel; (b) is the macrophyte composition of the Danube main stem significantly altered when the river divides into the three large navigable Delta channels. Water bodies considered were two contiguous sections of the main river channel, two large branches remaining from the historical floodplain, and the three main Delta channels. We quantified macrophyte diversity and floristic variation. Our data set was prepared from the MIDCC-project data base, in which macrophyte occurrence, abundance and habitat parameters are stored for contiguous survey units of the whole Danube river corridor. Field survey method followed that of Kohler and the European Standard EN14184. Results confirmed our first hypothesis: permanently connected side branches still support significantly different macrophyte assemblages, making them important indicators of floodplain connectivity. The diversion of the Danube into its three large navigable delta channels significantly alters the macrophyte vegetation from the c. 300 km of main stem up-river, substantially supporting our second hypothesis. Our results largely enhance the knowledge on aquatic plant biodiversity in the eu-potamal Danube, forming a solid base for long-term studies. We also discuss the relevance of our results regarding the ecological, as well as the conservational, quality of rivers and their floodplains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Addinsoft, 2008. XLSTAT®-Pro, Version 2008.7.02. Your Data Analysis Solution. Data Analysis and Statistical Solution for MS Excel. Addinsoft, Paris.

    Google Scholar 

  • Amoros, A. & G. Bornette, 2002. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology 47: 761–776.

    Article  Google Scholar 

  • Amoros, D., A. L. Roux, J. L. Reygrobellet, J. P. Bravard & G. Pautou, 1987. A method for applied ecological studies of fluvial hydrosystems. Regulated Rivers 1: 17–36.

    Article  Google Scholar 

  • Baart, I., C. Gschöpf, A. P. Blaschke, S. Preiner & T. Hein, 2010. Prediction of potential macrophyte development in response to restoration measures in an urban riverine wetland. Aquatic Botany 93: 153–162.

    Article  Google Scholar 

  • Barta, V., U. Schmidt-Mumm & G. A. Janauer, 2009. Adapting floodplain connectivity conditions – a prerequisite for sustaining aquatic macrophyte diversity in the UNESCO Biosphere Reserve Lobau (Austria). Ecohydrology and Hydrobiology 9: 73–81.

    Article  Google Scholar 

  • Bern Convention, 1979. Convention on the Conservation of European Wildlife and Natural Habitats. Council of Europe, Bern (Switzerland).

    Google Scholar 

  • Bornette, G. & C. Amoros, 1991. Aquatic vegetation and hydrology of a braided river floodplain. Journal of Vegetation Science 2: 497–512.

    Article  Google Scholar 

  • Bornette, G., C. Amoros & N. Lamoroux, 1998. Aquatic plant diversity in riverine wetlands: the role of connectivity. Freshwater Biology 39: 267–283.

    Article  Google Scholar 

  • CEN, 2003. European Standard EN 14184 Water Quality – Guidance Standard for the Surveying of Macrophytes in Running Waters. Comité Européen de Normalisation, Bruxelles.

    Google Scholar 

  • Chovanec, A., J. Waringer, M. Straif, W. Graf, W. Reckendorfer, A. Waringer-Löschenkohl, H. Waidbacher & H. Schultz, 2005. The Floodplain Index – a new approach for assessing the ecological status of river floodplain systems according to the EU Water Framework Directive. Archiv für Hydrobiologie 144: 169–185.

    Google Scholar 

  • Coops, H., J. Hanganu, M. Tudor & W. Oosterberg, 1999. Classification of Danube Delta lakes based on aquatic vegetation and turbidity. Hydrobiologia 415: 187–191.

    Article  Google Scholar 

  • Coops, H., L. L. Buijse, A. D. Buijse, A. Constantinescu, S. Covaliov, J. Hanganu, B. W. Ibelings, G. Menting, I. Navodaru, W. Oosterberg, M. Staras & L. Török, 2008. Trophic gradients in a large-river delta: ecological structure determined by connectivity gradients in the Danube delta (Romania). River Research and Applications 24: 698–709.

    Article  Google Scholar 

  • Covaliov, S., G. Van Geest, J. Hanganu, O. Hulea, L. Török & H. Coops, 2003. Seasonality of macrophyte dominance in flood-pulsed lakes of the Danube Delta. Hydrobiologia 509: 651–656.

    Google Scholar 

  • Cristofor, S., A. Vadineanu, A. Sarbu, C. Postolache, R. Dobre & M. Adamescu, 2003. Long-term changes of submerged macrophytes in the Lower Danube Wetland System. Hydrobiologia 509: 625–634.

    Article  Google Scholar 

  • Dansereau, P., 1959. Vascualar aquatic plant communities of southern Quebec. A preliminary analysis. Transactions of the Northeast Wildlife Conference 10: 27–54.

    Google Scholar 

  • Donita, N., D. Ivan, G. Coldea, V. Sanda, A. Popescu, Th. Chifu, M. Comanescu-Pauca, D. Mititelu & N. Boscaiu, 1992. Romanian Vegetation. Editura Tehnică Agricolă, Bucureşti, România.

    Google Scholar 

  • Dos Santos, A. M. & S. M. Thomaz, 2004. The role of connectivity in structuring aquatic macrophyte assemblages. In Agonstinho, A. A., L. Rodrigues, L. C. Gomes, S. M. Thomaz, & L. E. Miranda (eds), Structure and Functioning of the Parana River and its Floodplain – LTER-Site 6: 226–232.

  • Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.

    Google Scholar 

  • EU, 1992. Council Directive 92/43/EEC on the Conservation of Natural Habitats and of Wild Fauna and Flora. Official Journal of the European Communities, Brussels.

    Google Scholar 

  • EU, 2000. Council Directive 2000/60/EC on Establishing a Framework for Community Action in the Field of Water Policy. Official Journal of the European Communities, Brussels.

    Google Scholar 

  • Frahm, J.-P. & W. Frey, 2004. Moosflora, 4th ed. UTB Eugen Ulmer, Stuttgart.

    Google Scholar 

  • Fritz, R., S. Strohmayer, H. Tremp & A. Kohler, 1997. Submerse Makrophyten der südbadischen Oberrheinaue. Verbreitung, Ökologie und Bioindikation. DGL – Deutsche Gesellschaft für Limnologie. Tagungsbericht ‘Schwedt’ 14: 465–469.

    Google Scholar 

  • Hagström, J. O., 1916. Critical researches on the Potamogetons. Kungliga Svenska Vetenskapsakademiens Handlingar 55: 1–281.

    Google Scholar 

  • Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4: 1–9.

    Google Scholar 

  • Hanganu, J., G. Mihail & H. Coops, 1999. Responses of ecotypes of Phragmites australis to increased seawater influences: a field study in the Danube Delta, Romania. Aquatic Botany 64: 351–358.

    Article  Google Scholar 

  • Hawkes, H. A., 1975. River zonation and classification. In Whitton, B. A. (ed.), River Ecology. Blackwell Science Publishers, Oxford: 312–374.

    Google Scholar 

  • Hill, M. O. & H. G. Gauch, 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.

    Article  Google Scholar 

  • Hutchinson, G. E., 1975. A Treatise on Limnology, Vol. 3, Limnological Botany. John Wiley and Sons, New York.

    Google Scholar 

  • Illies, J. & L. Botoseanu, 1963. Problèmes et méthodes de la classification et de la zonation écologique des eaux courantes, considerées surtout du point de vue faunistique. Mitteilungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 12: 1–57.

    Google Scholar 

  • Janauer, G. A., 2006. Ecohydrological control of macrophytes in floodplain lakes. Ecohydrology and Hydrobiology 9: 19–24.

    Google Scholar 

  • Janauer, G. A. & D. Stetak, 2003. Macrophytes of the Hungarian lower Danube valley (1498–1468 river-km). Archiv für Hydrobiologie 147: 167–180.

    Google Scholar 

  • Janauer, G. A., V. Strausz, E. Lanz, B. Schmidt, C. Wöber, U. Veit, W. Schütz, V. Sipos, E. Falusi, K. Pall, A. Kohler, D. Csilla., H. Otahelova, M. Valachovic, M. Jursa, E. Szalma, A. Gaberscik, J. Topic, S. Ozimec, D. Vukov, D. Igic, P. Boza, G. Anackov, V. Valchev, V. Georgiev, G. Georgiev & A. Sarbu, 2005. Macrophyte Inventory Danube: Corridor and Catchment (MIDCC). The Federal Ministry of Agriculture, Forestry, Environment and Water Management, Vienna: 1–556.

  • Janauer, G. A., B. Schmidt, B. & A. Greiter, 2008a. Macrophytes. In Liska, I., F. Wagner & J. Slobodnik (eds), Joint Danube Survey 2. ICPDR – International Commission for the Protection of the Danube River, Vienna: 63–67.

  • Janauer, G. A., E. Lanz, U. Schmidt-Mumm, B. Schmidt & H. Waidbacher, 2008b. Aquatic macrophytes and hydro-electric power plant reservoirs in regulated rivers: man-made ecological compensation structures and the “ecological potential”. Ecohydrology and Hydrobiology 8: 149–157.

  • Janauer, G. A., U. Schmidt-Mumm & B. Schmidt, 2010. Aquatic macrophytes and water current velocity in the Danube River. Ecological Engineering 36: 1138–1145.

    Article  Google Scholar 

  • Jeppesen, E., T. L. Lauridsen, T. Kairesalo & M. R. Perrow, 1997. Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In Jeppesen, E., M. Sondergaard, Mo. Sondergaard & K. Christoffersen, (eds), The structuring role of submerged macrophytes in lakes. Ecological Studies 131: 91–114.

  • Jungwirth, M., S. Muhar & S. Schmutz, 2002. Re-establishing and assessing ecological integrity in riverine landscapes. Freshwater Biology 47: 876–887.

    Article  Google Scholar 

  • Junk, W. J. & M. T. F. Piedade, 1992. Species diversity of herbaceous plants in the floodplain of the middle Amazon. Verhandlungen der Internationalen Vereinigung für Limnologie 25: 1862–1865.

    Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Journal of Fisheries and Aquatic Sciences 106: 110–127.

    Google Scholar 

  • Kaplan, Z., 2008. A taxonomic revision of Stuckenia (Potamogetonaceae) in Asia, with notes on the diversity and variation of the genus on a worldwide scale. Folia Geobot 43: 159–234.

    Article  Google Scholar 

  • Kohler, A., 1978. Methoden der Kartierung von Flora und Vegetation von Süßwasserbiotopen. Landschaft und Stadt 10: 73–85.

    Google Scholar 

  • Kohler, A. & G. A. Janauer, 1995. Zur Methodik der Untersuchung von aquatischen Makrophyten in Fließgewässern. In Steinberg, Ch., H. Bernhard & H. Klapper (eds), Handbuch der angewandten Limnologie VIII-1.1.3. Ecomed, Landsberg/Lech: 1–22.

    Google Scholar 

  • Kohler, A., & H. Tremp, 1997. Submerse Makrophyten der südbadischen Oberrheinauen – Verbreitung, Ökologie, Bioindikation. Ministry of Environment and Transportation. Stuttgart: 1–43.

  • Kohler, A., H. Vollrath, H. & E. Beisl., 1971. Zur Verbreitung, Vergesellschaftung und Ökologie der Gefäßmakrophyten im Fließwassersystem Moosach (Münchner Ebene). Archiv für Hydrobiologie 69: 333–365.

  • Lanz, E., I. Wagner, M. Schabuss, K. Reiter & G. A. Janauer, 2010. Ecological assessment according to EC Habitat and Water Framework Directives: aquatic macrophyte vegetation, an Ecological Quality Element. International Conference in Landscape ecology, Brno: 150.

  • Laszlöffy, W., 1967. Die Hydrographie der Donau. Der Fluss als Lebensraum. In Liepolt, R. (ed.), Limnologie der Donau. Schweizerbart, Stuttgart: 1–146.

    Google Scholar 

  • Lee, P., C. Smith & S. Boutin, 2004. Quantitative review of riparian buffer width guidelines from Canada and the United States. Journal of Environmental Management 70: 165–180.

    Article  PubMed  CAS  Google Scholar 

  • Liska, I., F. Wagner & J. Slobodnik, J. (eds), 2008. Joint Danube Survey 2. International Commission for the Protection of the Danube River (ICPDR), Vienna.

  • Magurran, A. E., 2004. Measuring Biological Diversity. Blackwell Publishing, Oxford.

    Google Scholar 

  • McCune, B. & J. B. Grace, 2002. Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, Oregon, USA.

    Google Scholar 

  • McCune, B. & M. J. Mefford, 2006. PC-ORD. Multivariate Analysis of Ecological Data, Version 5.18. MjM Software, Gleneden Beach, USA.

    Google Scholar 

  • Milke, P. W., Jr., 1984. Meteorological applications of permutation techniques based on distance functions. In Krishnaiah, P. R. & P. K. Sen (eds), Handbook of Statistics, Vol. 4. Elsevier Science Publisher, Amsterdam: 813–830.

    Google Scholar 

  • Moog, O. & R. Wimmer, 1990. Grundlagen zum typologischen Charakteristik österreichischer Fließgewässer. Wasser und Abwasser 34: 55–211.

  • Naiman, R. J. & H. Decamps, 1990. The Ecology and Management of Aquatic–Terrestrial Ecotones. UNESCO Paris and Parthenon, Carnforth.

    Google Scholar 

  • Oltean, M., G. Negrean, A. Popescu, N. Roman, G. Dihoru, V. Sanda & S. Mihailescu, 1994. The Red List of the Vascular Plants of Romania. Romanian Academy of Science, Bucharest.

    Google Scholar 

  • Otahelova, H. & M. Valachovič, 2003. Distribution of macrophytes in different water-bodies (habitats) influenced by the Gebcikovo hydropower station (Slovakia) – present status. In Janauer, G. A., P. Hale & R. Sweeting (eds), Macrophyte Inventory of the River Danube: A Pilot Study. Archiv für Hydrobiologie 147: 97–117.

  • Ot’ahel’ova, H., M. Valachovič & R. Hrivnák, 2007. The impact of environmentsl factors on the distribution pattern of aquatic plants along the Danube River corridor (Slovakia). Limnologica 37: 290–302.

    Google Scholar 

  • Pall, K., B. Rath & G. A. Janauer, 1996. Die Makrophyten in dynamischen und abgedämmten Gewässersystemen der Kleinen Schüttinsel (Donau-Fluß-km 1848 bis 1806) in Ungarn. Limnologica 26: 105–115.

    Google Scholar 

  • Petrescu, M., 2007. Dobrogea and the Danube Delta – Flora and Habitat Conservation. Marinex Print S. R. L, Baia Mare, România.

    Google Scholar 

  • Petts, G. E. & C. Amoros, 1996. Fluvial Hydrosystems. Chapman & Hall, London.

    Google Scholar 

  • Podani, J., 2000. Introduction to the Exploration of Multivariate Biological Data. Backhuys Publishers, Leiden.

    Google Scholar 

  • Preston, C. D., 1995. Pondweeds of Great Britain and Ireland (B.S.B.I. Handbook No. 8). BSBI Publications, London.

    Google Scholar 

  • Rath, B., G. A. Janauer, K. Pall & A. Berczik, 2003. The aquatic macrophyte vegetation in the Old Danube/Hungarian bank, and other water bodies of the Szigetköz wetlands. In Janauer, G. A., P. Hale, & R. Sweeting (eds), Macrophyte Inventory of the River Danube: A Pilot Study. Archiv für Hydrobiologie 147: 127–143.

  • Reimann, C., P. Filzmoser, R. G. Garret & R. Dutter, 2008. Statistical Data Analysis Explained. Applied Environmental Statistics with ‘R’. Wiley, New Jersey.

    Book  Google Scholar 

  • Rodewald-Rudescu, L., 1974. Das Schilfrohr, Phragmites communis Trinius. Die Binnengewässer 27: 1–302.

    Google Scholar 

  • Sabo, J. L., R. Sponseller, M. Dixon, K. Gade, T. Harmes, J. Heffernan, A. Jani, G. Katz, C. Soykan, J. Watts & J. Welter, 2005. Riparian zones increase regional species richness by harbouring different, not more, species. Ecology 86: 59–62.

    Google Scholar 

  • Sand-Jensen, K. & J. Borum, 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41: 137–175.

    Article  Google Scholar 

  • Sarbu, A., 2003. Inventory of aquatic plants in the Danube Delta: a pilot study in Romania. Archiv für Hydrobiologie 147: 205–216.

    Google Scholar 

  • Sarbu, A., 2006. Aquatic macrophytes. In Tudorancea, C. & M. Tudorancea (eds), Danube Delta: Genesis and Biodiversity. Backhuys Publishers, Leiden: 133–175.

    Google Scholar 

  • Schneider, E., 2009. Aquatic macrophytes in the Danube Delta – indicators for water quality and habitat parameters. Studia Universitatis Babeş-Bolyai, Biologia 54: 21–31.

    Google Scholar 

  • Sculthorpe, C. D., 1967. The Biology of Aquatic Vascular Plants. Edward Arnold Publishes, London.

    Google Scholar 

  • Sedell, J. R., J. E. Richey & F. J. Swanson, 1989. The River Continuum Concept: a basis for the expected ecosystem behaviour of very large rivers? Canadian Journal of Fisheries and Aquatic Sciences 106: 49–55.

    Google Scholar 

  • Smith, A. J. E., 2004. The Moss Flora of Britain and Ireland. University Press, Cambridge.

    Book  Google Scholar 

  • Sommerwerk, N., T. Hein, M. Schneider-Jakoby, C. Baumgartner, A. Ostojic, M. Paunoic, J. Bloesch, R. Siber & K. Tockner, 2009. The Danube River Basin. In Tockner, K., U. Uehlinger & C. T. Robinson (eds), Rivers of Europe. Academic Press/Elsevier, Amsterdam: 59–112.

    Chapter  Google Scholar 

  • Statzner, B. & B. Higler, 1985. Questions and comments on the River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences 42: 1038–1044.

    Article  Google Scholar 

  • Ten Brinke, W., 2005. The Dutch Rhine: A Restrained River. Veen Magazines, Diemen.

    Google Scholar 

  • Thomaz, S. M., T. A. Pagirio, L. M. Bini & D. C. De Souza, 2004. Aquatic macrophytes from the Upper Parana River floodplain: species list and patterns of diversity in large scale. In Agonstinho, A.A., L. Rodrigues, L. C. Gomes, S. M. Thomaz & L. E. Miranda (eds), Structure and functioning of the Parana River and its floodplain – LTER-Site 6: 221–225.

  • Thorp J. H. & M. D. Delong, 1994. The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos 70: 305–308.

    Google Scholar 

  • Tockner, K., C. T. Robinson & U. Uehlinger, 2009. Rivers of Europe. Academic Press/Elsevier, Amsterdam.

    Google Scholar 

  • Tutin, T. G., V. H. Heywood, B. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters & D. A. Webb (eds), 1980. Flora Europaea, Vol. 1–5. Cambridge University Press, Cambridge.

    Google Scholar 

  • Van Geest, G. J., 2005. Macrophyte Succession in Floodplain Lakes: Spatio-Temporal Patterns in Relation to River Hydrology, Lake Morphology and Management. University of Vageningen, The Netherlands.

    Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1995. The serial discontinuity concept. Extending the model for floodplain rivers. Regulated Rivers: Research and Management 10: 159–168.

    Article  Google Scholar 

  • Wisskirchen, R. & H. Haeupler, 1998. Standardliste der Farn- und Blütenpflanzen Deutschlands. Verlag Eugen Ulmer, Stuttgart.

    Google Scholar 

  • Zalewski, M., D. Harper, B. Demars, G. Jolankai, C. Crosa, G. A. Janauer & N. Pacini, 2008. Linking biological and physical processes at the river basin scale: the origins, scientific background and scope of Ecohydrology. In Harper, D., M. Zalewski & N. Pacini (eds), Ecohydrology: Processes, Models and Case Studies. An Approach to the Sustainable Management of Water Resources. CABI, Wallingford: 1–17.

    Chapter  Google Scholar 

Web references

Download references

Acknowledgments

The surveys providing the background data were supported, in part, by the Austrian Committee for Danube Research (Pilot Study—1998/2000), and by the Austrian Federal Ministry of Agriculture, Forestry, Environment, and Water Management (Project—Macrophyte inventory of the total length of the River Danube, its floodplains and selected tributaries (short title: MIDCC—Multifunctional Integrated study Danube: Corridor and Catchment), who are thanked for their very substantial contributions. We also thank the reviewers for their highly appreciated comments on several aspects of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Janauer.

Additional information

Handling editor: K. J. Murphy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sârbu, A., Janauer, G., Schmidt-Mumm, U. et al. Characterisation of the potamal Danube River and the Delta: connectivity determines indicative macrophyte assemblages. Hydrobiologia 671, 75–93 (2011). https://doi.org/10.1007/s10750-011-0705-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0705-5

Keywords

Navigation