Skip to main content

Advertisement

Log in

Physiological responses of Spartina alterniflora to varying environmental conditions in Virginia marshes

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Physiological measurements were used to investigate the dependence of photosynthesis on light, temperature, and intercellular carbon dioxide (CO2) levels in the C4 marsh grass Spartina alterniflora. Functional relationships between these environmental variables and S. alterniflora physiological responses were then used to improve C4-leaf photosynthesis models. Field studies were conducted in monocultures of S. alterniflora in Virginia, USA. On average, S. alterniflora exhibited lower light saturation values (~1000 μmol m−2 s−1) than observed in other C4 plants. Maximum carbon assimilation rates and stomatal conductance to water vapor diffusion were 36 μmol (CO2) m−2 s−1 and 200 mmol (H2O) m−2 s−1, respectively. Analysis of assimilation-intercellular CO2 and light response relationships were used to determine Arrhenius-type temperature functions for maximum rate of carboxylation (V cmax), phosphoenolpyruvate carboxylase activity (V pmax), and maximum electron transport rate (J max). Maximum V cmax values of 105 μmol m−2 s−1 were observed at the leaf temperature of 311 K. Optimum V pmax values (80.6 μmol m−2 s−1) were observed at the foliage temperature of 308 K. The observed V pmax values were lower than those in other C4 plants, whereas V cmax values were higher, and more representative of C3 plants. Optimum J max values reached 138 μmol (electrons) m−2 s−1 at the foliage temperature of 305 K. In addition, the estimated CO2 compensation points were in the range of C3 or C3–C4 intermediate plants, not those typical of C4 plants. The present results indicate the possibility of a C3–C4 intermediate or C4-like photosynthetic mechanism rather than the expected C4-biochemical pathway in S. alterniflora under field conditions. In a scenario of atmospheric warming and increased atmospheric CO2 concentrations, S. alterniflora will likely respond positively to both changes. Such responses will result in increased S. alterniflora productivity, which is uncharacteristic of C4 plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adam, P., 1990. Saltmarsh Ecology. Cambridge University Press, Cambridge: 461.

    Google Scholar 

  • Anderson, C. M. & M. Treshow, 1980. A review of environmental and genetic factors that affect height in Spartina alterniflora Loisel (salt-marsh cord grass). Estuaries 3: 168–176.

    Article  Google Scholar 

  • Baisakh, N. & P. K. Subudhi, 2009. Heat stress alters the expression of salt stress induced genes in smooth cordgrass (Spartina alterniflora L.). Plant Physiology and Biochemistry 47: 232–235.

    Article  PubMed  CAS  Google Scholar 

  • Baldocchi, D. D. & K. B. Wilson, 2001. Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecological Modeling 142: 155–184.

    Article  CAS  Google Scholar 

  • Ball, J. T., I. E. Woodrow & J. A. Berry, 1987. A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis Under Different Environmental Conditions. Progress in Photosynthesis Research, Vol. IV. Martinus-Nijhoff Publishers, Dordrecht, The Netherlands: 221–224.

    Google Scholar 

  • Barlocher, M. O., D. A. Campbell, S. Al-asaaed & R. J. Ireland, 2003. Development change in CO2 compensation concentrations in Spartina alterniflora results from sigmoidal photosynthetic CO2 response. Photosynthetica 41: 365–372.

    Article  Google Scholar 

  • Barr, A. G., J. D. Fuentes, V. Engel, & J. C. Zieman, 2009. Physiological responses of red mangroves to the climate in the Florida Everglades. Journal of Geophysical Research-Biogeosciences. doi:10.1029/2008JG000843.

  • Bernacchi, C. J., C. Pimentel & S. P. Long, 2003. In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant, Cell, and Environment 26: 1419–1430.

    Article  CAS  Google Scholar 

  • Berry, J. A. & G. D. Farquhar, 1978. The CO2 concentration function of C4 photosynthesis: a biochemical model. In Hall, D., J. Coombs & T. Goodwin (eds), Proceeding of the 4th International Congress on Photosynthesis. Biochemical Society, London: 954–967.

  • Bjorkman, O. & B. Demmig, 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77-K among vascular plants of diverse origins. Planta 170: 489–504.

    Article  Google Scholar 

  • Bjorkman, O., M. R. Badger & P. A. Armound, 1980. Response and adaptation of photosynthesis at high temperature. In Turner, N. C. & P. J. Kramer (eds), Adaptation of Plants to Water and High Temperature Stress. John Wiley and Sons Inc, New York.

    Google Scholar 

  • Bruno, J. F. & M. D. Bertness, 2001. Habitat modification and facilitation in benthic marine communities. In Bertness, M., S. Gaines & M. Hay (eds), Marine Community Ecology. Sinauer, Sunderland: 201–218.

    Google Scholar 

  • Bunce, J. A., 2005. What is the usual internal carbon dioxide concentration in C4 species under midday field conditions? Photosynthetica 43: 603–608.

    Article  CAS  Google Scholar 

  • Callaway, J. C. & M. N. Josselyn, 1992. The introduction and spread of smooth cordgrass (Spartina alterniflora) in south San Francisco Bay. Estuaries 15: 218–226.

    Article  Google Scholar 

  • Callaway, J. C. & C. S. Sabraw, 1994. Effects of variable precipitation on the structure and diversity of a California salt marsh community. Journal of Vegetation Science 5: 433–438.

    Article  Google Scholar 

  • Charles, H. & J. S. Dukes, 2009. Effects of warming and altered precipitation on plant and nutrient dynamic of a New England salt marsh. Ecological Applications 19: 1758–1773.

    Article  PubMed  Google Scholar 

  • Chen, D. X., M. B. Coughenour, A. K. Knapp & C. E. Owensby, 1994. Mathematical simulation of C4 grass photosynthesis ambient and elevated CO2. Ecological Modeling 73: 63–80.

    Article  CAS  Google Scholar 

  • Collatz, G. J., J. T. Ball, C. Grivet & J. A. Berry, 1991. Physiological and environmental-regulation of stomatal conductance, photosynthesis and transpiration – a model that includes a laminar boundary-layer. Agricultural and Forest Meteorology 54: 107–136.

    Article  Google Scholar 

  • Collatz, G. J., M. Ribas-Carbo & J. A. Berry, 1992. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Australian Journal o Plant Physiology 19: 519–538.

    Article  Google Scholar 

  • Dai, T. & R. G. Wiegert, 1997. A field study of photosynthetic capacity and its response to nitrogen fertilization in Spartina alterniflora. Estuarine, Coastal and Marine Science 45: 273–283.

    Article  Google Scholar 

  • Day, J. W., C. A. S. Hall, W. M. Kemp & A. Yanez-Arancibia, 1989. Estuarine Ecology. John Wiley & Sons, New York.

    Google Scholar 

  • Diaz, H. F. & R. S. Bradley, 1997. Temperature variations during the last century at high elevation sites. Climatic Change 36: 253–279.

    Article  Google Scholar 

  • Doncaster, H. D. & R. C. Leegood, 1987. Regulation of phosphoenolpyruvate carboxylase activity in maize leaves. Plant Physiology 84: 82–87.

    Article  PubMed  CAS  Google Scholar 

  • Drake, B. G., et al., 1996. Acclimation of photosynthesis, respiration and ecosystem carbon flux of a wetland on Chesapeake Bay, Maryland to elevated atmospheric CO2 concentration. Plant and Soil 187: 111–118.

    Article  CAS  Google Scholar 

  • Duarte, C. M. & J. Cebrian, 1996. The fate of marine autotrophic production. Limnology and Oceanography 41: 1758–1766.

    Article  CAS  Google Scholar 

  • Erickson, J. E., J. P. Megonigal, G. Peresta & B. G. Drake, 2007. Salinity and sea level mediate elevated CO2 effects on C-3-C-4 plant interactions and tissue nitrogen in a Chesapeake Bay tidal wetland. Global Change Biology 13: 202–215.

    Article  Google Scholar 

  • Farquhar, G. D., 1983. On the nature of carbon isotope discrimination in C4 species. Australian Journal of Plant Physiology 10: 205–226.

    Article  CAS  Google Scholar 

  • Farquhar, G. D. & S. C. Wong, 1984. An empirical-model of stomatal conductance. Australian Journal of Plant Physiology 11: 191–209.

    Article  CAS  Google Scholar 

  • Farquhar, G. D., S. V. Caemmerer & J. A. Berry, 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90.

    Article  CAS  Google Scholar 

  • Fuentes, J. D. & K. M. King, 1989. Leaf photosynthesis and leaf conductance of maize grown hydroponically and in soil under field conditions. Agricultural and Forest Meteorology 45: 155–166.

    Article  Google Scholar 

  • Genty, B., J. M. Briantais & N. R. Baker, 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990: 87–92.

    CAS  Google Scholar 

  • Ghannoum, O., S. von Caemmerer & J. P. Conroy, 2000. The effect of drought on plant water use efficiency of nine NAD-ME and nine NADP-ME Australian C4 grasses. Functional Plant Biology 29: 1337–1348.

    Article  Google Scholar 

  • Giurgevich, J. R. & E. L. Dunn, 1979. Seasonal patterns of CO2 and water-vapor exchange of the tall and short height forms of Spartina alterniflora Loisel in a Georgia salt-marsh. Oecologia 43: 139–156.

    Article  Google Scholar 

  • Gleason, M. L. & E. L. Dunn, 1982. Effects of hypoxia on root and shoot respiration of Spartina alterniflora. In Kennedy, V. S. (ed.), Estuarine Comparisons. Academic Press, New York: 243–253.

    Google Scholar 

  • Goodbred, S. L. & A. C. Hine, 1995. Coastal storm deposition: Salt-marsh response to a severe extratropical storm, March 1993, west-central Florida. Geology 23: 679–682.

    Article  Google Scholar 

  • Gu, L. H., H. H. Shugart, J. D. Fuentes, T. A. Black & S. R. Shewchuk, 1999. Micrometeorology, biophysical exchanges and NEE decomposition in a two-story boreal forest – development and test of an integrated model. Agricultural and Forest Meteorology 94: 123–148.

    Article  Google Scholar 

  • Harley, P. C., R. B. Thomas, J. F. Reynolds & B. R. Strain, 1992. Modeling photosynthesis of cotton grown in elevated CO2. Plant, Cell, and Environment 15: 271–282.

    Article  CAS  Google Scholar 

  • Hemminga, M. A. & M. A. Mateo, 1996. Stable carbon isotopes in sea grasses: Variability in ratios and use in ecological studies. Marine Ecology Progress Series 14: 285–298.

    Article  Google Scholar 

  • Hopkinson, C. S., A. E. Lugo, M. Alber, A. P. Covich & A. J. Van Bloem, 2008. Forecasting effects of sea-level rise and windstorms on costal and inland ecosystems. Frontiers in Ecology and Environment 6: 255–263.

    Article  Google Scholar 

  • Howes, B. L., J. W. H. Dacey & J. M. Teal, 1985. Annual carbon mineralization and belowground production of Spartina alterniflora in a New-England salt-marsh. Ecology 66: 595–605.

    Article  CAS  Google Scholar 

  • Hunt, E. R., J. A. Weber & D. M. Gates, 1985. Effects of nitrate application on Amaranthus powellii Wats. 3 Optimal allocation of leaf nitrogen for photosynthesis and stomatal conductance. Plant Physiology 79: 619–624.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, L., Y. Luo, J. Chen & B. Li, 2009. Ecophysiological characteristics of invasive Spartina alterniflora and native species in salt marshes of Yangtze River estuary, China. Estuarine, Coastal and Shelf Science 81: 74–82.

    Article  Google Scholar 

  • Kathilankal, J. C., T. J. Mozdzer, J. D. Fuentes, P. D’Odorico, K. J. McGlathery & J. C. Zieman, 2008. Tidal influences on tidal assimilation by a salt marsh. Environmental Research Letters 3: 6.

    Article  Google Scholar 

  • Kirwan, M. L., G. R. Guntenspergen & J. T. Morris, 2009. Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Global Change Biology 15: 1982–1989.

    Article  Google Scholar 

  • Kirwan, M. L., G. R. Guntenspergen, A. D’Alpaos, J. T. Morris, S. M. Mudd & S. Temmerman, 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters 37: L23401.

  • Krauss, K. W., C. E. Lovelock, K. L. McKee, L. Lopez-Hoffman, S. M. L. Ewe & W. P. Sousa, 2008. Environmental drivers in mangrove establishment and early development: A review. Aquatic Botany 89: 105–127.

    Article  Google Scholar 

  • Ku, M. S., Y. Kano-Murakami & M. Matsuoka, 1996. Evolution and express ion of C4 photosynthesis genes. Plant Physiology 111: 949–957.

    Article  PubMed  CAS  Google Scholar 

  • Lambers, H., F. S. Chapi III & T. L. Pons, 1998. Plant physiological ecology, 3rd ed. Springer Verlag, New York.

    Google Scholar 

  • Leuning, R., 1990. Modeling stomatal behavior and photosynthesis in Eucalyptus grandis. Australian Journal of Plant Physiology 17: 159–175.

    Article  Google Scholar 

  • Long, S. P., 1991. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations – has its importance been underestimated. Plant, Cell, and Environment 14: 729–739.

    Article  CAS  Google Scholar 

  • Long, S. P. & C. J. Bernacchi, 2003. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of errors. Journal of Experimental Botany 5: 2393–2401.

    Article  Google Scholar 

  • Longstreth, D.J. & B.R. Strain, 1977. Effects of salinity and illumination on photosynthesis and water balance of Spartina alterniflora Loisel. Oecologia 31: 191–199.

    Google Scholar 

  • Maricle, B. R., R. W. Lee, C. E. Hellquist, O. Kiirats & G. E. Edwards, 2007. Effects of salinity on chlorophyll fluorescence and CO2 fixation in C-4 estuarine grasses. Photosynthetica 45: 433–440.

    Article  CAS  Google Scholar 

  • Maricle, B. R., N. K. Koteyeva, E. V. Voznesenkaya, J. R. Thomasson & G. E. Edwards, 2009. Diversity in leaf anatomy and stomatal distribution and conductance between salt marsh and fresh water species in the C4 genus Spartina (Poacea). New Phytologist 184: 216–233.

    Article  PubMed  CAS  Google Scholar 

  • Massad, R. S., A. Tuzet & O. Bethenod, 2007. The effect of temperature on C4-type leaf photosynthesis parameters. Plant, Cell, and Environment 30: 1191–1204.

    Article  CAS  Google Scholar 

  • McKee, K. L. & J. E. Rooth, 2008. Where temperate meets tropical: Multi-factorial effects of elevated CO2, nitrogen enrichment, and competition on a mangrove-salt marsh community. Global Change Biology 14: 971–984.

    Article  Google Scholar 

  • Moore, B. D., M. S. B. Ku & G. E. Edwards, 1989. Expression of C4-like photosynthesis in several species of Flaveria. Plant, Cell, and Environment 12: 541–549.

    Article  Google Scholar 

  • Morris, J. T., et al., 2002. Responses of coastal wetlands to rising sea level. Ecology 83: 2869–2877.

    Article  Google Scholar 

  • Mudd, S. M., S. M. Howell & J. T. Morris, 2009. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuarine, Coastal and Shelf Science 82: 377–389.

    Article  CAS  Google Scholar 

  • O’Leary, M. H., 1981. Carbon isotope fractionation in plants. Phytochemistry 20: 553–567.

    Article  Google Scholar 

  • Oleary, M. H. 1988. Carbon isotopes in photosynthesis. Bioscience 38: 328–336.

    Google Scholar 

  • Odum, E. P. & M. E. Fanning, 1973. Comparison of fungi and bacterial biovolume in dead leaves of smooth chord grass (Spartina alterniflora). Estuaries 5: 246–260.

    Google Scholar 

  • Olsson, T. & J. W. Leverenz, 1994. Non-uniform stomatal closure and the apparent convexity of the photosynthetic photon flux-density response curve. Plant, Cell, and Environment 17: 701–710.

    Article  Google Scholar 

  • Pearcy, R. W. & R. W. Ustin, 1984. Effects of salinity on growth and photosynthesis of three California tidal marsh species. Oecologia 62: 68–73.

    Article  Google Scholar 

  • Pezeshki, S. R. & R. D. Delaune, 1988. Carbon assimilation in contrasting streamside and inland Spartina alterniflora salt-marsh. Vegetatio 76: 55–61.

    Google Scholar 

  • Pezeshki, S. R., R. D. Delaune & W. H. Patrick, 1989. Effect of fluctuating rhizosphere redox potential on carbon assimilation of Spartina alterniflora. Oecologia 80: 132–135.

    Article  Google Scholar 

  • Poorter, H. & M. L. Navas, 2003. Plant growth and competition at elevated CO2: On winners, losers and functional groups. New Phytologist 157: 175–198.

    Article  Google Scholar 

  • Potvin, C., M. J. Lechowicz & S. Tardif, 1990. The statistical-analysis of ecophysiological response curves obtained from experiments involving repeated measures. Ecology 71: 1389–1400.

    Article  Google Scholar 

  • Rajendrudu, G., J. S. Prasad & V. S. R. Das, 1986. C3–C4 intermediate species in Alternanthera (Amaranthaceae). Plant Physiology 80: 409–414.

    Article  PubMed  CAS  Google Scholar 

  • Sage, R. F. & T. D. Sharkey, 1987. The effect of temperature on the occurrence of O2 and CO2 insensitive photosynthesis in field-grown plants. Plant Physiology 84: 658–664.

    Article  PubMed  CAS  Google Scholar 

  • Sand-Jensen, K. & H. Frost-Christensen, 1999. Plant growth and photosynthesis in the transition zone between land and stream. Aquatic Botany 63: 23–35.

    Article  CAS  Google Scholar 

  • Shea, M. L. 1977. Photosynthesis and photorespiration in relation to the phenotypic forms of Spartina alterniflora, Ph.D. Thesis, Yale University.

  • Shea, M. L., R. S. Warren & W. A. Niering, 1975. Biochemical and Transplantation Studies of the Growth Form of Spartina alterniflora on Connecticut Salt Marshes. Ecology 56: 461–466.

    Article  CAS  Google Scholar 

  • Simas, T., J. P. Nunes & J. G. Ferreirav, 2001. Effects of global climate change on coastal salt marshes. Ecological Modeling 139: 1–15.

    Article  CAS  Google Scholar 

  • Simon, J. P., C. Potvin & B. R. Strain, 1984. Effects of temperature and CO2 enrichment on kinetic properties of phosphor-enol-pyruvate carboxylase in two ecotypes of Echinochloa crusgalli (L.) Beauve., a C4 weed grass species. Oecologia 63: 145–152.

    Article  Google Scholar 

  • Sugiyama, T. & Y. Hirayama, 1983. Correlation of the activities of phosphoenolpyruvate carboxylase and pyruvate, orthophosphate dikinase with biomass in maize seedlings. Plant, Cell, and Environment 24: 783–787.

    CAS  Google Scholar 

  • Tatsumi, M. & Y. Hori, 1969. Studies of the photosynthesis of vegetable crops. I. Photosynthesis of young leaves of vegetables in relation to light intensity. Bull. Hort. Res. Sta., Japan A8: 127–140.

    Google Scholar 

  • von Caemmerer, S., 1999. Biochemical Models of Leaf Photosynthesis. CSIRO Publishing, Victoria.

    Google Scholar 

  • von Caemmerer, S. & R. T. Furbank, 1999. The modeling of C4 photosynthesis. The biology of C4 photosynthesis. Academic Press, New York: 169–207.

    Google Scholar 

  • Voznesenskaya, E. V., V. R. Franceschi, S. D. X. Chuong & G. E. Edwards, 2006. Functional characterization of phosphoenolpyruvate carboxykinase-type C-4 leaf anatomy: Immuno-, cytochemical and ultrastructural analyses. Annals of Botany-London 98: 77–91.

    Article  CAS  Google Scholar 

  • Wong, S. C., I. R. Cowan & G. D. Farquhar, 1985. Leaf conductance in relation to rate of CO2 assimilation. 1. Influence of nitrogen nutrition, phosphorus-nutrition, photon flux-density, and ambient partial-pressure of CO2 during ontogeny. Plant Physiology 78: 821–825.

    Article  PubMed  CAS  Google Scholar 

  • Xu, L. K. & D. D. Baldocchi, 2003. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiology 23: 865–877.

    PubMed  Google Scholar 

Download references

Acknowledgments

The U.S. National Science Foundation provided support to carry out this research as part of the VCR LTER research activities (grant number DEB-0621014). Two reviewers provided excellent comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José D. Fuentes.

Additional information

Handling editor: Karen McKee

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 195 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kathilankal, J.C., Mozdzer, T.J., Fuentes, J.D. et al. Physiological responses of Spartina alterniflora to varying environmental conditions in Virginia marshes. Hydrobiologia 669, 167–181 (2011). https://doi.org/10.1007/s10750-011-0681-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0681-9

Keywords

Navigation