Skip to main content

Advertisement

Log in

Identification of subpopulations in pelagic marine fish species using amino acid composition

  • Ecosystems and Sustainability
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The spatial stock complexity of marine fish species requires that population structure is taken into account in fisheries management. The aim of this study was to determine whether the amino acid composition (AAC) of the adult fish allows the identification of subpopulations within the stock. During a cruise in November 2003 along the entire Mediterranean coast of Spain, individuals were collected of the following pelagic species: Sardina pilchardus, Sardinella aurita, Engraulis encrasicolus, Trachurus trachurus, Trachurus mediterraneus, Scomber scombrus and Scomber colias. Individuals of S. pilchardus and E. encrasicolus were also collected from the waters of the Strait of Sicily in 2002 and 2003. The AAC of the fish eyes was seen to be species specific, and therefore, the differences in AAC among species may be based on inherited characters. Moreover, a clear differentiation was seen between the Spanish and Sicilian populations of S. pilchardus and E. encrasicolus. Furthermore, in the Spanish waters of the Mediterranean Sea, discriminant analysis revealed a substantial separation between the northern and southern subpopulations of S. pilchardus, S. aurita and E. encrasicolus. Temporal variations in AAC within species in each area were lower than the spatial variations observed among areas for each species, probably reflecting the influence on the AAC of the contrasting environmental characteristics of each area. Our results indicate that the ACC of the eyes in adult fish is a good tool for discriminating among subpopulations in pelagic marine fish species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agostini, V. N. & A. Bakun, 2002. ‘Ocean triads’ in the Mediterranean Sea: physical mechanisms potentially structuring reproductive habitat suitability (with example application to European anchovy, Engraulis encrasicolus). Fisheries Oceanography 11: 129–142.

    Article  Google Scholar 

  • Alemany, F. & F. Alvárez, 1993. Growth differences among sardine (Sardina pilchardus Walb.) populations in western Mediterranean. Scientia Marina 57: 229–234.

    Google Scholar 

  • Andrewartha, H. & L. C. Birch, 1954. The Distribution and Abundance of Animals. The University Chicago Press, Chicago.

    Google Scholar 

  • Bailey, K. M., T. J. Quinn, P. Bentzen & W. S. Grant, 1999. Population structure and dynamics of walleye Pollock: Theragra chalcogramma. Advances in Marine Biology 37: 179–255.

    Article  Google Scholar 

  • Begg, G. A. & J. R. Waldman, 1999. An holistic approach to fish stock identification. Fisheries Research 43: 35–44.

    Article  Google Scholar 

  • Bembo, D. G., G. R. Carvalho, N. Cingolani & T. J. Pitcher, 1996a. Electrophoretic analysis of stock structure in Northern Mediterranean anchovies, Engraulis encrasicolus. ICES Journal of Marine Science 53: 115–128.

    Article  Google Scholar 

  • Bembo, D. G., G. R. Carvalho, N. Cingolani, E. Arneri, G. Giannetti & T. J. Pitcher, 1996b. Allozymic and morphometric evidence for two stocks of the European anchovy Engraulis encrasicolus in Adriatic waters. Marine Biology 126: 529–538.

    Article  CAS  Google Scholar 

  • Booke, H. E., 1999. The stock concept revisited: perspectives on its history in fisheries. Fisheries Research 43: 9–11.

    Article  Google Scholar 

  • Borsa, P., 2002. Allozyme, mitochondrial-DNA, and morphometric variability indicate cryptic species of anchovy (Engraulis encrasicolus). Biological Journal of the Linnean Society 75: 261–269.

    Google Scholar 

  • Cadrin, S. X., K. D. Friedland & J. R. Waldman, 2005. Stock Identification Methods. Applications in Fishery Science. Elsevier Academic Press, London.

    Google Scholar 

  • Campana, S. E., G. A. Chouinard, J. M. Hanson, A. Fréchet & J. Brattey, 2000. Otolith elemental fingerprints as biological tracers of fish stocks. Fisheries Research 46: 343–357.

    Article  Google Scholar 

  • Carrera, P. & C. Porteiro, 2003. Stock dynamic of the Iberian sardine (Sardina pilchardus, W) and its implication on the fishery off Galicia (NW Spain). Scientia Marina 67: 245–258.

    Article  Google Scholar 

  • Cuttitta, A., C. Guisande, I. Riveiro, I. Maneiro, B. Patti, A. R. Vergara, G. Basilone, A. Bonanno & S. Mazzola, 2006. Factors structuring reproductive habitat suitability of Engraulis encrasicolus in the south coast of Sicily. Journal of Fish Biology 68: 264–275.

    Article  CAS  Google Scholar 

  • Douglas, R. H., J. C. Partridge & N. J. Marshall, 1998. The eyes of deep-sea fish I: lens pigmentation, tapeta and visual pigments. Progress in Retinal and Eye Research 17: 597–636.

    Article  PubMed  CAS  Google Scholar 

  • Edmonds, J. S., M. Moran, N. Caputi & M. Morita, 1989. Trace element analysis of fish sagittae as an aid to stock identification: Pink Snapper (Chrysophrys auratus) in western Australian waters. Canadian Journal of Fisheries and Aquatic Sciences 46: 50–54.

    Article  CAS  Google Scholar 

  • Geffen, A. J., K. Jarvis, J. P. Thorpe, R. T. Leah & R. D. M. Nash, 2003. Spatial differences in the trace element concentrations of Iris Sea plaice Pleuronectes platessa and whiting Merlagius merlagus otoliths. Journal of Sea Research 50: 245–254.

    Article  CAS  Google Scholar 

  • Gillanders, B. M., 2002. Temporal and spatial variability in elemental composition of otoliths: implications for determining stock identity and connectivity of populations. Canadian Journal of Fisheries and Aquatic Sciences 59: 669–679.

    Article  CAS  Google Scholar 

  • Gillanders, B. M., P. Sanchez-Jerez, J. Bayle-Sempere & A. Ramos-Espla, 2001. Trace elements in otoliths of the two-banded bream from a coastal region in the south-west Mediterranean: are there differences among locations? Journal of Fish Biology 59: 350–363.

    Article  CAS  Google Scholar 

  • Guisande, C., A. Barreiro, I. Maneiro, I. Riveiro, A. R. Vergara & A. Vaamonde, 2006. Tratamiento de datos. Diaz de Santos, Spain.

    Google Scholar 

  • Hanski, I., 1999. Metapopulation Ecology. Oxford University Press, Oxford.

    Google Scholar 

  • Hartl, D. L. & A. G. Clark, 1989. Principles of Population Genetics. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Kinsey, S. T., T. Orsoy, T. M. Bert & B. Mahmoudi, 1994. Population structure of the Spanish sardine Sardinella aurita: natural morphological variation in a genetically homogeneous population. Marine Biology 118: 309–317.

    Article  Google Scholar 

  • Kocher, T. D., 2003. Evolutionary biology: fractious phylogenies. Nature 423: 489–491.

    Article  PubMed  CAS  Google Scholar 

  • Kritzer, J. P. & P. F. Sale, 2004. Metapopulation ecology in the sea: from Levins’ model to marine ecology and fisheries science. Fish and Fisheries 5: 131–140.

    Article  Google Scholar 

  • Larrañeta, M. G., 1968. Unités de stock de la sardine de la Mediterranée Occidentale et de l’Adriatic. Etudes et Revues CGPM 33: 1–54.

    Google Scholar 

  • Levins, R., 1970. Extinction. Lectures on Mathematics 2: 75–107.

    Google Scholar 

  • Lleonart, J. & F. Maynou, 2003. Fish stock assessment in the Mediterranean: state of the art. Scientia Marina 67: 37–49.

    Google Scholar 

  • MacLean, J. A. & D. O. Evans, 1981. The stock concept, discreteness of fish stocks, and fisheries management. Canadian Journal of Fisheries and Aquatic Sciences 38: 1889–1898.

    Article  Google Scholar 

  • MacQuinn, I. H., 1997. Metapopulations and the Atlantic herring. Reviews in Fish Biology and Fisheries 7: 297–329.

    Article  Google Scholar 

  • Marques, J. F., C. M. Teixeira & H. N. Cabral, 2006. Differentiation of commercially important flatfish populations along the Portuguese coast: evidence from morphology and parasitology. Fisheries Research 81: 293–305.

    Article  Google Scholar 

  • Murta, A. G., 2000. Morphological variation of horse mackerel (Trachurus trachurus) in the Iberian and North African Atlantic: Implications for stock identification. ICES Journal of Marine Science 57: 1240–1248.

    Article  Google Scholar 

  • Pawson, M. G. & S. Jennings, 1996. A critique of methods for stock identification in marine capture fisheries. Fisheries Research 25: 203–217.

    Article  Google Scholar 

  • Ramon, M. M. & J. A. Castro, 1997. Genetic variation in natural stocks of Sardina pilchardus (sardines) from the western Mediterranean Sea. Heredity 78: 520–528.

    Article  CAS  Google Scholar 

  • Riveiro, I., C. Guisande, C. Franco, A. Lago deLanzós, A. Solá, I. Maneiro & A. R. Vergara, 2003. Egg and larval amino acid composition as indicators of niche resource partitioning in pelagic fish species. Marine Ecology Progress Series 260: 252–262.

    Article  Google Scholar 

  • Rooker, J. R., D. H. Secor, V. S. Zdanowicz, G. De Metrio & L. O. Relini, 2003. Identification of Atlantic bluefin tuna (Thunnus thynnus) stocks from putative nurseries using otolith chemistry. Fisheries Oceanography 12: 75–84.

    Article  Google Scholar 

  • Ryman, N., U. Lagercrantz, L. Anderson, R. Chakraborty & R. Rosenberg, 1984. Lack of correspondence between genetic and morphologic variability patterns in Atlantic herring (Clupea harengus). Heredity 53: 687–704.

    Article  Google Scholar 

  • Smedbol, R. K. & R. K. Wroblewski, 2002. Metapopulation theory and northern cod population structure: interdependency of subpopulations in recovery of a groundfish population. Fisheries Research 55: 161–174.

    Article  Google Scholar 

  • Smith, P. J. & A. Jamieson, 1986. Stock discreteness in herrings: a conceptual revolution. Fisheries Research 4: 223–234.

    Article  Google Scholar 

  • Spanakis, E., N. Tsimedines & E. Zouros, 1989. Genetic differences between populations of sardine, Sardina pilchardus, and anchovy, Engraulis encrasicolus, in the Aegean and Ionian seas. Journal of Fish Biology 35: 417–437.

    Article  Google Scholar 

  • Stephenson, R. L., 1999. Stock complexity in fisheries management: a perspective of emerging issues related to population sub-units. Fisheries Research 43: 247–249.

    Article  Google Scholar 

  • Swain, D. P. & C. J. Foote, 1999. Stocks and chameleons: the use of phenotypic variation in stock identification. Fisheries Research 43: 113–128.

    Article  Google Scholar 

  • Swan, S. C., A. J. Geen, B. Morales-Nin, J. D. M. Gordon, T. Shimmield, T. Sawyer & E. Massutý, 2006. Otolith chemistry: an aid to stock separation of Helicolenus dactylopterus (bluemouth) and Merluccius merluccius (European hake) in the Northeast Atlantic and Mediterranean. ICES Journal of Marine Science 63: 504–513.

    Article  CAS  Google Scholar 

  • Thorrold, S. R., C. Latkoczy, P. K. Swart & C. M. Jones, 2001. Natal homing in a marine fish metapopulation. Science 291: 297–299.

    Article  PubMed  CAS  Google Scholar 

  • Thresher, R. E., 1999. Elemental composition of otoliths as a stock delineator in fishes. Fisheries Research 43: 165–204.

    Article  Google Scholar 

  • Timi, J. T., J. L. Luque & N. H. Sardella, 2005. Parasites of Cynoscion guatucupa along South American Atlantic coasts: evidence for stock discrimination. Journal of Fish Biology 67: 1603–1618.

    Article  Google Scholar 

  • Tudela, S., 1999. Morphological variability in a Mediterranean, genetically homogeneous population of the European anchovy, Engraulis encrasicolus. Fisheries Research 42: 229–243.

    Article  Google Scholar 

  • Turan, C., G. R. Carvalho & J. Mork, 1998. Molecular genetic analysis of Atlanto-Scandian herring (Clupea harengus) populations using allozymes and mitochondrial DNA markers. Journal of Marine Biology Association UK 78: 269–283.

    Article  CAS  Google Scholar 

  • Van Wandelen, C. H. & S. A. Cohen, 1997. Using quaternary high-performance liquid chromatography eluent systems for separating 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate-derivatized amino acid mixtures. Journal of Chromatography 763: 11–22.

    Article  Google Scholar 

  • Waldman, J. R., 1999. The importance of comparative studies in stock analysis. Fisheries Research 43: 237–246.

    Article  Google Scholar 

  • Waldman, J. R., R. A. Richards, W. B. Schill, I. Wirgin & M. C. Fabrizio, 1997. An empirical comparison of stock identification techniques applied to striped bass. Transactions of the American Fisheries Society 126: 369–385.

    Article  Google Scholar 

  • Ward, R. D. & P. W. Grewe, 1994. Appraisal of molecular genetic techniques in fisheries. Reviews of Fish Biology and Fisheries 4: 300–325.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the Instituto Español de Oceanografía for the ECOMED cruise and to the officers and crew of the R/V Cornide de Saavedra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Riveiro.

Additional information

Guest editors: Graham J. Pierce, Vasilis D. Valavanis, Begoña M. Santos & Julio M. Portela / Marine Ecosystems and Sustainability

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riveiro, I., Guisande, C., Iglesias, P. et al. Identification of subpopulations in pelagic marine fish species using amino acid composition. Hydrobiologia 670, 189–199 (2011). https://doi.org/10.1007/s10750-011-0663-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0663-y

Keywords

Navigation