Skip to main content
Log in

Responses of two Mediterranean seagrasses to experimental changes in salinity

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The aim of this study is to examine the effects of variations in salinity levels on growth and survival of two fast-growing Mediterranean seagrasses, Cymodocea nodosa and Zostera noltii. We also tested the capacity of C. nodosa to acclimate to a gradual increase in salinity and to discover how it responds to a sharp rise in salinity in combination with other factors, such as increases in temperature, seasonality and different plant-population origins. Several short-term (10 days) experiments were conducted under controlled conditions. For each experiment, ten marked shoots were placed in 5-l aquaria, where they were exposed to different salinity treatments (ranging from 2 to 72 psu). Growth and survival of both species were significantly affected by salinity. A significant effect between salinity and temperature on the shoot growth rate of C. nodosa was also detected, but not on shoot mortality. When C. nodosa plants were acclimated by gradually increasing the salinity level, it was observed that acclimatisation improved tolerance to salinity changes. A different response to salinity variations, depending on the origin of the plants or the season of the year, was also detected. These results indicated that Z. noltii plants tolerate conditions of hyposalinity better than C. nodosa, and that the tolerance range of C. nodosa may change depending on the temperature, the season or the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams, J. B. & G. C. Bate, 1994. The ecological implications of tolerance to salinity by Ruppia cirrhosa (Petagna) Grande and Zostera capensis Setchell. Botanica Marina 37: 449–456.

    Article  Google Scholar 

  • Arai, M., J. Y. Pak, K. Nomura & T. Nitta, 1991. Seawater-resistant, non-spherical protoplasts from seagrass leaves. Physiologia Plantarum 83: 551–559.

    Article  Google Scholar 

  • Benjamin, K. J., D. I. Walker, A. J. McComb & J. Kuo, 1999. Structural response of marine and estuarine plants of Halophila ovalis (R.Br.) Hook. f. to long-term hyposalinity. Aquatic Botany 64: 1–17.

    Article  CAS  Google Scholar 

  • Biebl, R. & C. P. McRoy, 1971. Plasmatic resistance of respiration and photosynthesis of Zostera marina at different salinities and temperatures. Marine Biology 8: 48–56.

    Article  CAS  Google Scholar 

  • Caye, G. & A. Meinesz, 1986. Experimental study of seed germination in the seagrass Cymodocea nodosa. Aquatic Botany 26: 79–87.

    Article  Google Scholar 

  • Caye, G., C. Bulard, A. Meinesz & F. Loquès, 1992. Dominant role of seawater osmotic pressure on germination in Cymodocea nodosa. Aquatic Botany 42: 187–193.

    Article  Google Scholar 

  • Charpentier, A., P. Grillas, F. Lescuyer, E. Coulet & I. Auby, 2005. Spatio-temporal dynamics of a Zostera noltii dominated community over a period of fluctuating salinity in a shallow lagoon, Southern France. Estuarine Coastal and Shelf Science 64: 307–315.

    Article  Google Scholar 

  • Chesnes, T. C. & C. L. Montague, 2001. The effects of salinity fluctuation on the productivity and osmoregulation of two seagrass species. Estuarine Research Federation Conference Abstracts, November 4–8, 2001, St. Petersburg, Florida.

  • den Hartog, C., 1970. The Sea-Grasses of the World. North-Holland Publications Company, Amsterdam.

    Google Scholar 

  • Doering, P. H. & R. H. Chamberlain, 1998. Experimental studies on the salinity tolerance of turtle grass, Thalassia testudinum. In Bortone, S. A. (ed.), Workshop on Seagrasses. Subtropical and Tropical Seagrass Management Ecology: Responses to Environmental Stress. Fort Myers, Florida: 13.

  • Drew, E. A., 1978. Factors affecting photosynthesis and its seasonal variation in the seagrasses Cymodocea nodosa (Ucria) Ascherson and Posidonia oceanica (L.) Delile in the Mediterranean. Journal of Experimental Marine Biology and Ecology 31: 173–194.

    Article  CAS  Google Scholar 

  • Drew, E. A., 1979. Physiological aspects of primary production in seagrasses. Aquatic Botany 7: 139–150.

    Article  CAS  Google Scholar 

  • Dring, M. J., 1992. The Biology of Marine Plants. Cambridge University Press, Cambridge.

    Google Scholar 

  • Druehl, L. D., 1981. Geographical distribution. In Lobban, L. S. & M. J. Wynne (eds), The Biology of Seaweeds. Blackwell, Oxford: 306–325.

    Google Scholar 

  • Fernández, J. A., M. J. García-Sánchez & H. H. Felle, 1999. Physiological evidence for a proton pump and sodium exclusion mechanisms at the plasma membrane of the marine angiosperm Zostera marina L. Journal of Experimental Botany 50: 1763–1768.

    Article  Google Scholar 

  • Fernández-Torquemada, Y. & J. L. Sánchez-Lizaso, 2005. Effects of salinity on leaf growth and survival of the Mediterranean seagrass Posidonia oceanica (L.) Delile. Journal of Experimental Marine Biology and Ecology 320: 57–63.

    Article  Google Scholar 

  • Fernández-Torquemada, Y., J. M. González-Correa & J. L. Sánchez-Lizaso, 2005a. Preliminary results of the monitoring of the brine discharge produced by the SWRO desalination plant of Alicante (SE Spain). Desalination 182: 395–402.

    Article  Google Scholar 

  • Fernández-Torquemada, Y., M. J. Durako & J. L. Sánchez-Lizaso, 2005b. Effects of salinity and possible interactions with temperature and pH on growth and photosynthesis of Halophila johnsonii Eiseman. Marine Biology 148: 251–260.

    Article  Google Scholar 

  • Fernández-Torquemada, Y., J. M. Gónzalez-Correa, A. Loya, L. M. Ferrero, M. Díaz-Valdés & J. L. Sánchez-Lizaso, 2009. Dispersion of brine discharge from seawater reverse osmosis desalination plants. Desalination and Water Treatment 5: 137–145.

    Article  Google Scholar 

  • Fukuhara, T., J. Y. Pak, Y. Ohwaki, H. Tsujimura & T. Nitta, 1996. Tissue-specific expression of the gene for a putative plasma membrane H+-ATPase in a seagrass. Plant Physiology 110: 35–42.

    Article  PubMed  CAS  Google Scholar 

  • Gacia, E., O. Invers, M. Manzanera, E. Ballesteros & J. Romero, 2007. Impact of the brine from a desalination plant on a shallow seagrass (Posidonia oceanica) meadow. Estuarine Coastal and Shelf Science 72: 579–590.

    Article  CAS  Google Scholar 

  • Greve, T. M. & T. Binzer, 2004. Which factors regulate seagrass growth and distribution? In Borum, J., C. M. Duarte, D. Krause-Jensen & T. M. Greve (eds), European Seagrasses an Introduction to Monitoring and Management. The M&Ms Project, Hillerød: 19–23.

    Google Scholar 

  • Hillman, K., A. J. McComb & D. I. Walker, 1995. The distribution, biomass and primary production of the seagrass Halophila ovalis in the Swan/Canning Estuary, Western Australia. Aquatic Botany 51: 1–54.

    Article  Google Scholar 

  • Hootsmans, M. J. M., J. E. Vermaat & W. van Vierssen, 1987. Seed bank development, germination and early seedling survival of two seagrass species from The Netherlands: Zostera marina L. and Zostera noltti Hornem. Aquatic Botany 28: 275–285.

    Article  Google Scholar 

  • Jagels, R., 1973. Studies of a marine grass, Thalassia testudinum I. Ultrastructure of the osmoregulatory leaf cells. American Journal of Botany 60: 1003–1009.

    Article  Google Scholar 

  • Kamermans, P., M. A. Hemminga & D. J. de Jong, 1999. Significance of salinity and silicon levels for growth of a formerly estuarine eelgrass (Zostera marina) population (Lake Grevelingen, The Netherlands). Marine Biology 133: 527–539.

    Article  CAS  Google Scholar 

  • Kerr, E. A. & S. Strother, 1985. Effects of irradiance, temperature and salinity on photosynthesis of Zostera muelleri. Aquatic Botany 23: 177–183.

    Article  Google Scholar 

  • Kinne, O., 1964. The effects of temperature and salinity on marine and brackish water animals. II. Salinity and temperature salinity combinations. In Barnes, H. (ed.), Oceanography and Marine Biology. An Annual Review. Haefner, New York: 281–339.

    Google Scholar 

  • Kirst, G. O., 1989. Salinity tolerance of eukaryotic marine algae. Annual Reviews of Plant Physiology. Plant Molecular Biology 40: 21–53.

    Google Scholar 

  • Kraemer, G. & L. Mazzella, 1999. Nitrogen acquisition, storage, and use by the co-occurring Mediterranean seagrasses Cymodocea nodosa and Zostera noltii. Marine Ecology Progress Series 183: 95–103.

    Article  CAS  Google Scholar 

  • Kraemer, G., R. H. Chamberlain, P. H. Doering, A. D. Steinman & M. Hanisak, 1999. Physiological responses of transplant of the freshwater angiosperm Vallisneria americana along a salinity gradient in the Caloosahatchee Estuary (Southwestern Florida). Estuaries 22: 138–148.

    Article  CAS  Google Scholar 

  • Lattemann, S. & T. Höpner, 2003. Seawater desalination. Impacts of brine and chemical discharges on the marine environment, Desalination Publications, L’Aquila.

  • Loques, F., G. Caye & A. Meinesz, 1990. Germination in the marine phanerogam Zostera noltii Hornemann at Golfe Juan, French Mediterranean. Aquatic Botany 38: 249–260.

    Article  Google Scholar 

  • Marbà, N., J. Cebrian, S. Enríquez & C. M. Duarte, 1996. Growth patterns of Western Mediterranean seagrasses: species-specific responses to seasonal forcing. Marine Ecology Progress Series 133: 203–215.

    Article  Google Scholar 

  • Mazzella, L., M. B. Scipione, M. C. Gambi, M. C. Buia, M. Lorenti, V. Zupo & G. Cancemi, 1993. The Mediterranean seagrass Posidonia oceanica and Cymodocea nodosa. A comparative overview. First International Conference on the Mediterranean Coastal Environment, Antalya, Turkey: 103–116.

  • McMillan, C. & F. N. Moseley, 1967. Salinity tolerances of five marine spermatophytes of Redfish Bay, Texas. Ecology 48: 503–506.

    Article  Google Scholar 

  • Montague, C. L. & J. A. Ley, 1993. A possible effect of salinity fluctuation on abundance of benthic vegetation and associated fauna in Northeastern Florida Bay. Estuaries 16: 703–717.

    Article  CAS  Google Scholar 

  • Ogata, E. & T. Matsui, 1965. Photosynthesis in several marine plants of Japan as affected by salinity, drying and pH, with attention to their growth habitats. Botanica Marina 8: 199–217.

    Article  CAS  Google Scholar 

  • Pagès, J. F., M. Pérez & J. Romero, 2010. Sensitivity of the seagrass Cymodocea nodosa to hypersaline conditions: a microcosm approach. Journal of Experimental Marine Biology and Ecology 386: 34–38.

    Article  Google Scholar 

  • Pak, J. Y., T. Fukuhara & T. Nitta, 1995. Discrete subcellular localization of membrane-bound ATPase activity in marine angiosperms and marine algae. Planta 196: 15–22.

    Article  PubMed  CAS  Google Scholar 

  • Pavón-Salas, N., R. Herrera, A. Hernández-Guerra & R. Haroun, 2000. Distributional pattern of seagrasses in the Canary Islands (Central-East Atlantic Ocean). Journal of Coastal Research 16: 328–335.

    Google Scholar 

  • Peduzzi, P. & A. Vukovič, 1990. Primary production of Cymodocea nodosa in the Gulf of Trieste (northern Adriatic Sea): a comparison of methods. Marine Ecology Progress Series 64: 197–207.

    Article  Google Scholar 

  • Peralta, G., F. G. Brun, I. Hernández, J. J. Vergara & J. L. Pérez-Lloréns, 2005. Morphometric variations as acclimation mechanisms in Zostera noltii beds. Estuarine Coastal and Shelf Science 64: 347–356.

    Article  Google Scholar 

  • Pérez, M. & J. Romero, 1992. Photosynthetic response to light and temperature of the seagrass Cymodocea nodosa and the prediction of its seasonality. Aquatic Botany 43: 51–62.

    Article  Google Scholar 

  • Pérez, M., C. M. Duarte, J. Romero, K. Sand-Jensen & T. Alcoverro, 1994. Growth plasticity in Cymodocea nodosa stands: the importance of nutrient supply. Aquatic Botany 47: 249–264.

    Article  Google Scholar 

  • Pérez Ruzafa, A., C. Marcos, I. M. Pérez Ruzafa & J. D. Ros, 1987. Evolución de las características ambientales y de los doblamientos del Mar Menor (Murcia, SE España). Anales de Biología 12: 53–65.

    Google Scholar 

  • Philippart, C. J. M., 1995. Seasonal variation in growth and biomass of an intertidal Zostera noltii stand in the Dutch Wadden Sea. Netherlands Journal of Sea Research 33: 205–218.

    Article  Google Scholar 

  • Phillips, R. C. & E. G. Meñez, 1988. Seagrasses. Smithsonian Institution Press, Washington.

    Google Scholar 

  • Pinnerup, S. P., 1980. Leaf production of Zostera marina L. at different salinities. Ophelia Supplement 1: 219–224.

    Google Scholar 

  • Pirc, H., M. C. Buia & L. Mazzella, 1986. Germination and seedling development of Cymodocea nodosa (Ucria) Ascherson under laboratory conditions and “in situ”. Aquatic Botany 26: 181–188.

    Article  Google Scholar 

  • Ralph, P. J., 1998. Photosynthetic responses of Halophila ovalis (R. Br.) Hook. f. to osmotic stress. Journal of Experimental Marine Biology and Ecology 227: 203–220.

    Article  CAS  Google Scholar 

  • Ralph, P. J., 1999. Photosynthetic response of Halophila ovalis (R.Br.) Hook. f. to combined environmental stress. Aquatic Botany 65: 83–96.

    Article  Google Scholar 

  • Ramage, D. L. & D. R. Schiel, 1998. Reproduction in the seagrass Zostera novazelandica on intertidal platforms in southern New Zealand. Marine Biology 130: 479–489.

    Article  Google Scholar 

  • Reyes, J., M. Sansón & J. Afonso-Carrillo, 1995. Distribution and reproductive phenology of the seagrass Cymodocea nodosa (Ucria) Ascherson in the Canary Islands. Aquatic Botany 50: 171–180.

    Article  Google Scholar 

  • Robblee, M. B., T. R. Barber, P. R. Carlson, M. J. Durako, J. W. Fourqurean, L. K. Muehlstein, D. Porter, L. A. Yarbro, R. T. Zieman & J. C. Zieman, 1991. Mass mortality of the tropical seagrass Thalassia testudinum in Florida Bay (USA). Marine Ecology Progress Series 71: 297–299.

    Article  Google Scholar 

  • Sánchez-Lizaso, J. L., J. Romero, J. Ruiz, E. Gacia, J. L. Buceta, O. Invers, Y. Fernández-Torquemada, J. Mas, A. Ruiz-Mateo & M. Manzanera, 2008. Salinity tolerance of the Mediterranean seagrass Posidonia oceanica: recommendations to minimize the impact of brine discharges from desalination plants. Desalination 221: 602–607.

    Article  Google Scholar 

  • Thomas, D. N., J. C. Collins & G. Russell, 1988. Interactive effects of temperature and salinity upon net photosynthesis of Cladophora glomerata (L.) Kütz. and C. rupestris (L.) Kütz. Botanica Marina 31: 73–77.

    Article  Google Scholar 

  • Thorhaug, A. & J. Marcus, 1981. Mortality of Thalassia testudinum (Banks ex Konig) when exposed to the extremes of temperature, salinity and light. American Journal of Botany 68: 1102.

    Google Scholar 

  • Tomasko, D. A. & M. O. Hall, 1999. Productivity and biomass of the seagrass Thalassia testudinum along a gradient of freshwater influence in Charlotte Harbor, Florida. Estuaries 22: 592–602.

    Article  Google Scholar 

  • Touchette, B. W., 2007. Seagrass-salinity interactions: physiological mechanisms used by submersed marine angiosperms for a life at sea. Journal of Experimental Marine Biology and Ecology 350: 194–215.

    Article  Google Scholar 

  • Tyerman, S. D., 1989. Solute and water relations of seagrasses. In Larkum, A. W. D., A. J. McComb & S. A. Shepherd (eds), Biology of Seagrasses. Elsevier, Amsterdam: 729–759.

    Google Scholar 

  • Underwood, A. J., 1997. Experiments in Ecology. Their Logical Design and Interpretation using Analysis of Variance. Cambridge University Press, Cambridge.

    Google Scholar 

  • Underwood, A. J. & M. G. Chapman. 1997. Statistical program GMAV.5 for Windows. Institute of Marine Ecology, University of Sidney, Australia.

  • van Katwijk, M. M., G. H. W. Schmitz, A. P. Gasseling & P. H. van Avesaath, 1999. Effects of salinity and nutrient load and their interaction on Zostera marina. Marine Ecology Progress Series 190: 155–165.

    Article  Google Scholar 

  • Vermaat, J. E., J. A. J. Beijer, R. Gijlstra, M. J. M. Hootsmans, C. J. M. Philippart, N. W. van den Brink & W. van Vierssen, 1993. Leaf dynamics and standing stocks of intertidal Zostera noltii Hornem and Cymodocea nodosa (Ucria) Ascherson on the Banc d’Arguin (Mauritania). Hydrobiologia 258: 59–72.

    Article  Google Scholar 

  • Vermaat, J. E., F. C. A. Verhagen & D. Lindenburg, 2000. Contrasting responses in two populations of Zostera noltii Hornem. to experimental photoperiod manipulation at two salinities. Aquatic Botany 67: 179–189.

    Article  Google Scholar 

  • Walker, D. I., 1985. Correlations between salinity and growth of the seagrass Amphibolis antarctica (Labill.) Sonder & Aschers., in Shark Bay, Western Australia, using a new method for measuring production rate. Aquatic Botany 23: 13–26.

    Article  Google Scholar 

  • Walker, D. I. & A. J. McComb, 1990. Salinity response of the seagrass Amphibolis antarctica (Labill.) Sonder et Aschers.: an experimental validation of field results. Aquatic Botany 36: 359–366.

    Article  Google Scholar 

  • Westphalen, G., E. O’Loughlin, G. Collings, J. Tanner, Y. Eglinton & S. Bryars, 2005. Responses to reduced salinities of the meadow forming seagrasses Amphibolis and Posidonia from the Adelaide metropolitan coast. ACWS technical report no 9 prepared for the Adelaide Coastal Waters Study Steering Committee. South Australian Research and Development Institute (Aquatic Sciences) Publication No. RD01/020814, Adelaide. http://www.epa.sa.gov.au/pdfs/acws9.pdf.

  • Wortmann, J., J. W. Hearne & J. B. Adams, 1997. A mathematical model of an estuarine seagrass. Ecological Modeling 98: 137–149.

    Article  Google Scholar 

  • Zieman, J. C., 1974. Methods for the study of the growth and production of turtle grass, Thalassia testudinum König. Aquaculture 4: 139–143.

    Article  Google Scholar 

  • Zieman, J. C., 1975. Seasonal variation of turtle grass, Thalassia testudinum König, with reference to temperature and salinity effects. Aquatic Botany 1: 107–123.

    Article  Google Scholar 

Download references

Acknowledgements

This research was financed by an ACUAMED contract and by an FPI grant (FPI 01 A 002) from the Generalitat Valenciana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda Fernández-Torquemada.

Additional information

Handling editor: Pierluigi Viaroli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Torquemada, Y., Sánchez-Lizaso, J.L. Responses of two Mediterranean seagrasses to experimental changes in salinity. Hydrobiologia 669, 21–33 (2011). https://doi.org/10.1007/s10750-011-0644-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0644-1

Keywords

Navigation