Skip to main content
Log in

Sediment penetration depths of epi- and infaunal ostracods from Lake Geneva (Switzerland)

  • OSTRACODA – BIOSTRATIGRAPHY AND APPLIED ECOLOGY
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Many (palaeo-)environmental parameters can be deduced from ecological and chemical analyses of ostracods. However, the specific ecology of each taxon has a great impact on its reaction to changing environmental conditions. As a consequence, each taxon records these changes differently. The mean penetration depth (MPD) and relative individual abundances have been documented along sediment depth profiles for the dominant sub-littoral to profundal species of ostracods in western Lake Geneva, Switzerland, and this data can be used to estimate their preferential habitat in terms of sediment depths. Isocypris beauchampi, Limnocytherina sanctipatricii, Cypria ophtalmica forma lacustris at 13-m water depths, Limnocythere inopinata, and a winter generation of Herpetocypris reptans have the shallowest habitat preferences at the study sites (MPDs of 0.45, 0.48, 0.49, 0.60, and 0.81 cm, respectively). These results suggest that these populations may be regarded as being preferentially epifaunal forms. Populations of Cytherissa lacustris (MPDs of 0.61, 0.73, and 0.82 cm at 13-, 33-, and 70-m water depths, respectively), Cypria ophtalmica forma lacustris at 70 m (MPD = 0.96 cm), Fabaeformiscandona caudata (MPD = 0.99 cm), and a summer generation of Herpetocypris reptans (MPD = 1.03 cm) were identified as being infaunal. Candona neglecta is the species that was found the deepest in the sediment of Lake Geneva, with MPDs of 0.65, 1.22, and 1.30 cm at 13-, 33-, and 70-m water depths, respectively. Information on the sediment texture and oxygen concentrations inferred from the analyses of sediment pore water suggest that the oxygen content of the sediment pore water is not the only dominant parameter controlling the differences in ostracod sediment penetration depths observed among the different sites, but that they might also be influenced by the sediment ‘softness,’ which itself depends on grain size, water content, and the abundance of organic matter in sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anadón, P., R. Utrilla, A. Vázquez, M. Martín-Rubio, J. Rodriguez-Lázaro & F. Robles, 2008. Paleoenvironmental evolution of the Pliocene Villarroya Lake, northern Spain, from stable isotopes and trace-element geochemistry of ostracods and molluscs. Journal of Paleolimnology 39: 399–419.

    Article  Google Scholar 

  • Belis, C. & D. Ariztegui, 2004. The influence of biological and environmental factors on the stable isotopic compositions of ostracods – the Late Pleistocene record from Lake Albano, central Italy. Journal of Limnology 63: 219–232.

    Article  Google Scholar 

  • Bolliger, R., H. Brandl, P. Höhener, K. W. Hanselmann & R. Bachofen, 1992. Squeeze-water analysis for the determination of metabolites in lake sediments – comparison of methods. Limnology and Oceanography 37: 448–455.

    Article  CAS  Google Scholar 

  • Boomer, I. & G. Eisenhauer, 2002. Ostracod faunas as palaeoenvironmental indicators in marginal marine environments. In Holmes, J. A. & A. R. Chivas (eds.), The Ostracoda: Applications in Quaternary Research, Vol. 131. American Geophysical Union, Washington, DC: 135–149.

    Chapter  Google Scholar 

  • Brandl, H., K. W. Hanselmann & R. Bachofen, 1990. In situ stimulation of bacterial sulfate reduction in sulfate-limited freshwater lake sediments. FEMS Microbiology Ecology 74: 21–32.

    Article  CAS  Google Scholar 

  • CIPEL, 1984. Le Léman: Synthèse 1957–1982. Commission Internationale pour la Protection des Eaux du lac Léman, Lausanne.

    Google Scholar 

  • CIPEL, 2006. Rapports campagne 2005. Commission Internationale pour la Protection des Eaux du lac Léman, Lausanne.

  • CIPEL, 2010. Rapports campagne 2009. Commission Internationale pour la Protection des Eaux du lac Léman, Lausanne.

  • Corbari, L., P. Carbonel & J.-C. Massabuau, 2004. How a low tissue O2 strategy could be conserved in early crustaceans: the example of the podocopid ostracods. Journal of Experimental Biology 207: 4415–4425.

    Article  PubMed  Google Scholar 

  • Corbari, L., P. Carbonel & J.-C. Massabuau, 2005. The early life history of tissue oxygenation in crustaceans: the strategy of the myodocopid ostracod Cylindroleberis mariae. The Journal of Experimental Biology 208: 661–670.

    Article  PubMed  Google Scholar 

  • Curry, B. B., 1999. An environmental tolerance index for ostracodes as indicators of physical and chemical factors in aquatic habitats. Palaeogeography Palaeoclimatology Palaeoecology 148: 51–63.

    Article  Google Scholar 

  • Danielopol, D. L., W. Geiger, M. Tölderer-Farmer, C. P. Orellana & M.-N. Terrat, 1988. In search of Cypris and Cythere – a report of the evolutionary ecological project on limnic Ostracoda from the Mondsee (Austria). In Hanai, T., N. Ikeya & K. Ishizaki (eds.), Evolutionary Biology of Ostracoda, Its Fundamental Applications. Proceedings of the 9th International Symposium on Ostracoda. Kodosha/Elsevier, Tokyo/Amsterdam: 485–500.

    Chapter  Google Scholar 

  • Danielopol, D. L., L. M. Casale, B. Rogulj, J. Srobl & K. Maier, 1990. Spatial distribution of Cytherissa lacustris living in Mondsee. Bulletin de l’Institut de géologie du bassin d’Aquitaine 47: 139–165.

    Google Scholar 

  • De Deckker, P., A. R. Chivas, J. M. G. Shelley & T. Torgersen, 1988. Ostracod shell chemistry: a new palaeoenvironmental indicator applied to a regressive/transgressive record from the Gulf of Carpentaria, Australia. Palaeogeography Palaeoclimatology Palaeoecology 66: 231–241.

    Article  Google Scholar 

  • Decrouy, L., 2009. Environmental and Biological Controls on the Geochemistry (δ18O, δ13C, Mg/Ca, and Sr/Ca) of Living Ostracods from Lake Geneva. PhD Thesis, University of Lausanne [available at http://my.unil.ch/serval/document/BIB_32983D894668.pdf].

  • Decrouy, L., T. W. Vennemann & D. Ariztegui, subm. Sept. 2010a. Controls on ostracod shell geochemistry: part 1. Variations of environmental parameters within ostracod (micro-)habitat. Geochimica et Cosmochimica Acta.

  • Decrouy, L., T. W. Vennemann & D. Ariztegui, subm. Sept. 2010b. Controls on ostracod shell geochemistry: part 2. Carbon and oxygen isotopes compositions. Geochimica et Cosmochimica Acta.

  • Decrouy, L., T. W. Vennemann & D. Ariztegui, in prep. Spatial and seasonal distribution of ostracods in Lake Geneva.

  • Delorme, L. D., 1978. Distribution of freshwater ostracodes in Lake Erie. Journal of Great Lakes Research 4: 216–220.

    Article  Google Scholar 

  • Dwyer, G. S., T. M. Cronin, P. A. Baker, M. E. Buzas & T. Corrège, 1995. North Atlantic deepwater temperature change during Late Pliocene and Late Quaternary climatic cycles. Science 270: 1347–1351.

    Article  CAS  Google Scholar 

  • Engstrom, D. R. & S. R. Nelson, 1991. Paleosalinity from trace metals in fossil ostracodes compared with observational records at Devils Lake, North Dakota, USA. Palaeogeography Palaeoclimatology Palaeoecology 83: 295–312.

    Article  Google Scholar 

  • Geiger, W., 1990. The role of oxygen in the disturbance and recovery of the Cytherissa lacustris population of Mondsee (Austria). Bulletin de l’Institut de géologie du bassin d’Aquitaine 47: 167–189.

    Google Scholar 

  • Geiger, W., 1993. Cytherissa lacustris (Ostracoda, Crustacea): its use in detecting and reconstructing environmental changes at the sediment–water interface. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 25: 1102–1107.

    Google Scholar 

  • Griffiths, H. I. & D. S. Martin, 1993. The spatial distribution of benthic ostracods in the profundal zone of Loch Ness. The Scottish Naturalist 105: 137–147.

    Google Scholar 

  • Horne, D. J., 2007. A mutual temperature range method for Quaternary palaeoclimatic analysis using European nonmarine Ostracoda. Quaternary Science Reviews 26: 1398–1415.

    Article  Google Scholar 

  • Ito, E. & R. M. Forester, 2009. Changes in continental ostracode shell chemistry: uncertainty of cause. Hydrobiologia 620: 1–15.

    Article  CAS  Google Scholar 

  • Janz, H. & T. W. Vennemann, 2005. Isotopic composition (O, C, Sr, and Nd) and trace element ratios (Sr/Ca, Mg/Ca) of Miocene marine and brackish ostracods from North Alpine Foreland deposits (Germany and Austria) as indicators for palaeoclimate. Palaeogeography Palaeoclimatology Palaeoecology 225: 216–247.

    Article  Google Scholar 

  • Külköylüoğlu, O., 2004. On the usage of ostracods (Crustacea) as bioindicator species in different aquatic habitats in the Bolu region, Turkey. Ecological Indicators 4: 139–147.

    Article  Google Scholar 

  • Martin, P., L. Granina, K. Martens & B. Goddeeris, 1998. Oxygen concentration profiles in sediments of two ancient lakes: Lakes Baikal (Siberia, Russia) and Lake Malawi (East Africa). Hydrobiologia 367: 163–174.

    Article  CAS  Google Scholar 

  • Mbahinzireki, G., F. Uiblein & H. Winkler, 1991. Microhabitat selection of ostracods in relation to predation and food. Hydrobiologia 222: 115–119.

    Article  Google Scholar 

  • Meisch, C., 2000. Freshwater Ostracoda of Western and Central Europe. Süsswasser von Mitteleuropa, 8/3. Spektrum Akademischer Verlag, Berlin.

    Google Scholar 

  • Mezquita, F., J. R. Roca, J. M. Reed & G. Wansard, 2005. Quantifying species–environment relationships in non-marine Ostracoda for ecological and palaeoecological studies: examples using Iberian data. Palaeogeography Palaeoclimatology Palaeoecology 225: 93–117.

    Article  Google Scholar 

  • Ricketts, R. G., T. C. Johnsen, K. A. Brown, K. A. Rasmusen & V. Romanovsky, 2001. The Holocene paleolimnology of Lake Issyk-Kul, Kyrgystan: trace element and stable isotope composition of ostracodes. Palaeogeography Palaeoclimatology Palaeoecology 176: 207–227.

    Article  Google Scholar 

  • Roca, J. R. & D. L. Danielopol, 1991. Exploration of interstitial habitats by the phytophilous Ostracod Cypridopsis vidua (O.F. Müller): experimental evidence. Annales de Limnologie 27: 243–252.

    Article  Google Scholar 

  • Schwalb, A., 2003. Lacustrine ostracodes as stable isotope recorders of late-glacial and Holocene environmental dynamics and climate. Journal of Paleolimnology 29: 267–351.

    Article  Google Scholar 

  • Smith, A. S. & D. J. Horne, 2002. Ecology of marine, marginal marine and nonmarine ostracodes. In Holmes, J. A. & A. R. Chivas (eds.), The Ostracoda: Applications in Quaternary Research. Geophysical Monograph. American Geophysical Union, Washington, DC: 37–64.

    Chapter  Google Scholar 

  • Tütken, T., T. W. Vennemann, H. Janz & E. P. J. Heimann, 2006. Palaeoenvironment and palaeoclimate of the Middle Miocene lake in the Steinheim basin, SW Germany: a reconstruction from C, O, and Sr isotopes of fossil remains. Palaeogeography Palaeoclimatology Palaeoecology 241: 457–491.

    Article  Google Scholar 

  • Vernet, J.-P., R. L. Thomas, J.-M. Jaquet & R. Friedli, 1972. Texture of the sediments of the Petit Lac (Western Lake Geneva). Eclogae Geologicae Helvetiae 65: 591–610.

    Google Scholar 

  • Viehberg, F. A., 2006. Freshwater ostracod assemblages and their relationship to environmental variables in waters from northeast Germany. Hydrobiologia 571: 213–224.

    Article  Google Scholar 

  • von Grafenstein, U., 2002. Oxygen-isotope studies of ostracods from deep lakes. In Holmes, J. A. & A. R. Chivas (eds.), The Ostracoda: Applications in Quaternary Research, Vol. 131. American Geophysical Union, Washington, DC: 249–266.

    Chapter  Google Scholar 

  • von Grafenstein, U., H. Erlenkeuser, J. Müller, P. Trimborn & J. Alefs, 1996. A 200 year mid-European air temperature record preserved in lake sediments: an extension of the δ18OP-air temperature relation into the past. Geochimica et Cosmochimica Acta 60: 4025–4036.

    Article  Google Scholar 

  • Yu, Z. C., E. Ito, D. R. Engstrom & S. C. Fritz, 2002. A 2100-year trace-element and stable-isotope record at decadal resolution from Rice Lake in the Northern Great Plains, USA. Holocene 12: 605–617.

    Article  Google Scholar 

Download references

Acknowledgments

The research presented in this manuscript was generously funded by Swiss National Science Foundation (SNF) projects (SNF—200021-107958 and 200020-119935). The authors would also like to express their gratitude to the Institute F.-A. Forel for the research vessel and the limnological material necessary for sediment sampling. Many colleagues and friends also helped with the field work and Patrick De Deckker, Jonathan Holmes, and Antje Schwalb all commented on the original thesis from which this article has been derived. Thanks are also due to Dan Danielopol for his advice on ostracod identification, as well as the two anonymous reviewers for their constructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Decrouy.

Additional information

Guest Editors: D.A. Dermeval, R.L. Pinto & K. Martens / Ostracoda – Biostratigraphy and Applied Ecology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Decrouy, L., Vennemann, T.W. & Ariztegui, D. Sediment penetration depths of epi- and infaunal ostracods from Lake Geneva (Switzerland). Hydrobiologia 688, 5–23 (2012). https://doi.org/10.1007/s10750-010-0561-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0561-8

Keywords

Navigation