Skip to main content

Advertisement

Log in

Macroinvertebrate community dynamics in a temperate European Atlantic river. Do they conform to general ecological theory?

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Spatial and temporal dynamics of macroinvertebrate communities have usually been linked to several environmental and anthropic factors. The aim of this study is to elucidate how important are these factors in structuring macroinvertebrate communities from temperate regions. Regarding the macroinvertebrate number of taxa, the Habitat Template Model, the Dynamic Equilibrium Hypothesis and the Intermediate Disturbance Hypothesis will be tested in order to know how important the diversity of instream elements and the hydrological disturbance frequency are in defining the macroinvertebrate taxonomic richness. Thus, the structure and composition of macroinvertebrate communities were analysed in nine sites of the Pas River basin, a temperate Atlantic basin in northern Spain, during winter, spring, summer and autumn 2005, together with water physicochemical and environmental characteristics. Macroinvertebrate abundance increased downstream and during summer, probably favoured by lower hydraulic stress and water organic enrichment. As predicts the Habitat Template Model, the macroinvertebrate number of taxa was related to habitat heterogeneity. However, no clear relationship amongst macroinvertebrate richness and water quality was found. The macroinvertebrate taxonomic richness did not correspond exactly with the Dynamic Equilibrium Hypothesis and the Intermediate Disturbance Hypothesis because it was relatively high in the absence of hydrological disturbances (summer). Thus, disturbance events may play a secondary role in determining the seasonal dynamic of the number of taxa. However, hydrological disturbances can be considered the most important factors explaining the seasonal pattern of macroinvertebrate abundance. On the other hand, spatial patterns of macroinvertebrate community structure and composition were mainly determined by resource availability, hydraulic conditions, habitat heterogeneity and human alterations, whilst hydrological predictability and resource availability might play a major role in determining seasonal dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abella, M. A. & M. J. Gonzalez, 1986. Variación estacional de la fauna dulceacuícola del alto Nalón, Asturias. Limnetica 2: 173–179.

    Google Scholar 

  • Allan, J. D., 1995. Stream Ecology; Structure and Function of Running Waters. Chapman & Hall, London, England.

    Google Scholar 

  • Alvarez-Cabria, M., J. Barquin & J. A. Juanes, 2010. Spatial and seasonal variability of macroinvertebrate metrics: do macroinvertebrate communities track river health? Ecological Indicators 10: 370–379.

    Article  CAS  Google Scholar 

  • Azrina, M. Z., C. K. Yap, A. R. Ismail, A. Ismail & S. G. Tan, 2006. Anthropogenic impacts on the distribution and biodiversity of benthic macroinvertebrates and water quality of the Langat River, Peninsular Malaysia. Ecotoxicology and Environmental Safety 64: 337–347.

    Article  CAS  PubMed  Google Scholar 

  • Barquin, J., 2000. Estructura de la comunidad de macroinvertebrados bentónicos de un tramo medio del río Agüera; estudios de producción secundaria y dieta. U.P.V., Leioa.

    Google Scholar 

  • Barquin, J. & R. G. Death, 2004. Patterns of invertebrate diversity in streams and freshwater springs in Northern Spain. Archiv fur Hydrobiologie 161: 329–349.

    Article  Google Scholar 

  • Basaguren, A. & P. Riaño, 1994. Trophic structure variability of the macroinvertebrate communities in the Agüera Stream (Nothern Spain). Verhandlungen Internationale Vereinigung der limnologie 25: 1727–1732.

    Google Scholar 

  • Basaguren, A., A. Elosegui & J. Pozo, 1996. Changes in the trophic structure of benthic macroinvertebrate communities associated with food availability and stream flow variations. Internationale Revue der Gesamten Hydrobiologie 81: 79–91.

    Article  CAS  Google Scholar 

  • Chauvet, E. & A. M. Jeanlouis, 1988. Litter Production in the Garonne Riparian Forest and Allochthonous Input to the River. Acta Oecologica-Oecologia Generalis 9: 265–279.

    Google Scholar 

  • Chaves, M. L., P. M. Chainho, J. L. Costa, N. Prat & M. J. Costa, 2005. Regional and local environmental factors structuring undisturbed benthic macroinvertebrate communities in the Mondego River basin, Portugal. Archiv fur Hydrobiologie 163: 497–523.

    Article  CAS  Google Scholar 

  • Clausen, B. & B. J. F. Biggs, 1997. Relationships between benthic biota and hydrological indices in New Zealand streams. Freshwater Biology 38: 327–342.

    Article  Google Scholar 

  • Connell, J. H., 1978. Diversity in tropical rainforest and coral reefs. Science 199: 1302–1310.

    Article  CAS  PubMed  Google Scholar 

  • Cucherousset, J., F. Santoula, J. Fiquerola & R. Cereghino, 2008. How do biodiversity patterns of river animals emerge from the distributions of common and rare species? Biological Conservation 141: 2984–2992.

    Article  Google Scholar 

  • Dahl, J., R. K. Johnson & L. Sandin, 2004. Detection of organic pollution of streams in southern Sweden using benthic macroinvertebrates. Hydrobiologia 516: 161–172.

    Article  CAS  Google Scholar 

  • Death, R. G. & M. K. Joy, 2004. Invertebrate community structure in streams of the Manawatu-Wanganui region, New Zealand: the roles of catchment versus reach scale influences. Freshwater Biology 49: 982–997.

    Article  Google Scholar 

  • Death, R. G. & M. J. Winterbourn, 1995. Diversity patterns in stream benthic invertebrate communities – the influence of habitat stability. Ecology 76: 1446–1460.

    Article  Google Scholar 

  • Elliott, J. M., 2006. Critical periods in the life cycle and the effects of a severe spate vary markedly between four species of elmid beetles in a small stream. Freshwater Biology 51: 1527–1542.

    Article  Google Scholar 

  • Elosegui, A. & J. Pozo, 1994. Spatial versus temporal variability in the physical and chemical characteristics of the Aguera stream (Northern Spain). Acta Oecologica: International Journal of Ecology 15: 543–559.

    Google Scholar 

  • Elosegui, A. & J. Pozo, 1998. Epilithic biomass and metabolism in a north Iberian stream. Aquatic Sciences 60: 1–16.

    Article  Google Scholar 

  • Extence, C. A., D. M. Balbi & R. P. Chadd, 1999. River flow indexing using British benthic macroinvertebrates: a framework for setting hydroecological objectives. Regulated Rivers: Research & Management 15: 543–574.

    Article  Google Scholar 

  • Feminella, J. W., 1996. Comparison of benthic macroinvertebrate assemblages in small streams along a gradient of flow permanence. Journal of the North American Benthological Society 15: 651–669.

    Article  Google Scholar 

  • Garcia, A., A. Sainz, J. A. Revilla, C. Alvarez, J. A. Juanes & A. Puente, 2008. Surface water resources assessment in scarcely gauged basins in the north of Spain. Journal of Hydrology 356: 312–326.

    Article  Google Scholar 

  • Gayraud, S., M. Philippe & L. Maridet, 2000. The response of benthic macroinvertebrates to artificial disturbance: drift or vertical movement in the gravel bed of two sub-alpine streams? Archiv fur Hydrobiologie 147: 431–446.

    Google Scholar 

  • Giller, P. S. & B. Malmqvist, 1997. The Biology of Streams and Rivers. Biology of Habitats. Oxford University Press, Oxford, England.

    Google Scholar 

  • Gonzalez, J. M., A. Basaguren & J. Pozo, 2000. Life history and secondary production of Ephemerella ignita (PODA) (Ephemeroptera, Ephemerellidae) in a north Iberian stream. Archiv fur Hydrobiologie 147: 535–545.

    Google Scholar 

  • Gonzalez, J. M., A. Basaguren & J. Pozo, 2001. Life history and production of Caenis luctuosa (Burmeister) (Ephemeroptera, Caenidae) in two nearby reaches along a small stream. Hydrobiologia 452: 209–215.

    Article  Google Scholar 

  • Graca, M. A. S., 2001. The role of invertebrates on leaf litter decomposition in streams – a review. International Review of Hydrobiology 86: 383–393.

    Article  Google Scholar 

  • Harper, D. & M. Everard, 1998. Why should the habitat-level approach underpin holistic river survey and management? Aquatic Conservation: Marine and Freshwater Ecosystems 8: 395–413.

    Article  Google Scholar 

  • Hawkins, C. P. & J. R. Sedell, 1981. Longitudinal and seasonal-changes in functional-organization of macroinvertebrate communities in 4 Oregon streams. Ecology 62: 387–397.

    Article  Google Scholar 

  • Howden, N. J. K. & T. P. Burt, 2009. Statistical analysis of nitrate concentrations from the Rivers Frome and Piddle (Dorset, UK) for the period 1965–2007. Ecohydrology 2: 55–65.

    Article  CAS  Google Scholar 

  • Huston, M. A., 1994. Biological Diversity: The Coexistence of Species on Changing Landscapes. The Press Syndicate of the University of Cambridge, Cambridge, England.

    Google Scholar 

  • Izaguirre, O. & A. Elosegui, 2005. Environmental control of seasonal and inter-annual variations of periphytic biomass in a North Iberian stream. Annales de Limnologie 41: 35–46.

    Article  Google Scholar 

  • Jacobsen, D., R. Schultz & A. Encalada, 1997. Structure and diversity of stream invertebrate assemblages: the influence of temperature with altitude and latitude. Freshwater Biology 38: 247–261.

    Article  Google Scholar 

  • Kerans, B. L., M. F. Dybdahl, M. M. Gangloff & J. E. Jannot, 2005. Potamopyrgus antipodarum: distribution, density, and effects on native macroinvertebrate assemblages in the Greater Yellowstone Ecosystem. Journal of the North American Benthological Society 24: 123–138.

    Article  Google Scholar 

  • Kowe, R., R. E. Skidmore, B. A. Whitton & A. C. Pinder, 1998. Modelling phytoplankton dynamics in the River Swale, an upland river in NE England. Science of the Total Environment 210: 535–546.

    Article  Google Scholar 

  • Lysne, S. & P. Koetsier, 2006. Experimental studies on habitat preference and tolerances of three species of snails from the Snake River of southern Idaho, USA. American Malacological Bulletin 21: 77–85.

    Google Scholar 

  • McCabe, D. J. & N. J. Gotelli, 2000. Effects of disturbance frequency, intensity, and area on assemblages of stream macroinvertebrates. Oecologia 124: 270–279.

    Article  Google Scholar 

  • McCune, B. & J. B. Grace, 2002. Analysis of Ecological Communities. MjM Software, Glenden Beach, OR, USA.

    Google Scholar 

  • McCune, B. & M. J. Mefford, 1995. Multivariate Analysis of Ecological Data, Version 2.0. MjM Software Design, Gleneden Beach, OR, USA.

    Google Scholar 

  • Merigoux, S. & S. Doledec, 2004. Hydraulic requirements of stream communities: a case study on invertebrates. Freshwater Biology 49: 600–613.

    Article  Google Scholar 

  • Mihaljevic, Z., M. Kerovec, V. Tavcar & I. Bukvic, 1998. Macroinvertebrate community on an artificial substrate in the Sava River: long-term changes in the community structure and water quality. Biologia 53: 611–620.

    Google Scholar 

  • Molinero, J. & J. Pozo, 2004. Impact of a eucalyptus (Eucalyptus globulus Labill.) plantation on the nutrient content and dynamics of coarse particulate organic matter (CPOM) in a small dytrsm. Hydrobiologia 528: 143–165.

    Article  CAS  Google Scholar 

  • Morais, M., P. Pinto, P. Guilherme, J. Rosado & I. Antunes, 2004. Assessment of temporary streams: the robustness of metric and multimetric indices under different hydrological conditions. Hydrobiologia 516: 229–249.

    Article  Google Scholar 

  • Ortiz, J. D., E. Marti & M. A. Puig, 2005. Recovery of the macroinvertebrate community below a wastewater treatment plant input in a Mediterranean stream. Hydrobiologia 545: 289–302.

    Article  Google Scholar 

  • Otermin, A., A. Basaguren & J. Pozo, 2002. Re-colonization by the macroinvertebrate community after a drought period in a first-order stream (Agüera Basin, Northern Spain). Limnetica 21: 117–128.

    Google Scholar 

  • Parasiewicz, P., 2007. The MesoHABSIM model revisited. River Research and Applications 23: 893–903.

    Article  Google Scholar 

  • Pardo, I. & M. Alvarez, 2006. Comparison of resource and consumer dynamics in Atlantic and Mediterranean streams. Limnetica 25: 271–286.

    Google Scholar 

  • Poff, N. L. & J. V. Ward, 1990. Physical habitat template of lotic systems – recovery in the context of historical pattern of spatiotemporal heterogeneity. Environmental Management 14: 629–645.

    Article  Google Scholar 

  • Pozo, J., A. Basaguren & A. Elosegui, 1994. Transported and benthic coarse particulate organic matter in the Aguera Stream (Northern Spain). Internationale Vereinigung für Theoretische und Angewandte Limnologie 25: 1723–1726.

    Google Scholar 

  • Prego, R., P. Boi & A. Cobelo-Garcia, 2008. The contribution of total suspended solids to the Bay of Biscay by Cantabrian Rivers (northern coast of the Iberian Peninsula). Journal of Marine Systems 72: 342–349.

    Article  Google Scholar 

  • R Development Core Team, 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Resh, V. H., A. V. Brown, A. P. Covich, M. E. Gurtz, H. W. Li, G. W. Minshall, S. R. Reice, A. L. Sheldon, J. B. Wallace & R. C. Wissmar, 1988. The role of disturbance in stream ecology. Journal of the North American Benthological Society 7: 433–455.

    Article  Google Scholar 

  • Riaño, P., 1998. Ciclos biológicos y ecología trófica de los macroinvertebrados del bentos fluvial (Plecoptera, Ephemeroptera y Trichoptera). Universidad del País Vasco, Bilbao, España, Leioa.

    Google Scholar 

  • Riaño, P., A. Basaguren & J. Pozo, 1993. Variaciones espaciales en las comunidades de macroinvertebrados del río Agüera (Pais Vasco-Cantabria) en dos épocas con diferentes condiciones de régimen hidrológico. Limnetica 9: 19–28.

    Google Scholar 

  • Ricklefs, R. E. & G. L. Miller, 1999. Ecology. W. H. Freeman and Company, New York, USA.

    Google Scholar 

  • Rivas-Martinez, S., A. Penas & T. E. Díaz, 2004. Bioclimatic Map of Europe, Bioclimates. León University, Cartographic Service, León, Spain.

    Google Scholar 

  • Schluter, D. & R. E. Ricklefs, 1993. Species diversity: an introduction to the problem. In Schluter, D. (ed.), Species Diversity in Ecological Communities; Historical and Geographical Perspectives. The University of Chicago Press, Chicago: 1–10.

    Google Scholar 

  • Shannon, C. E., 1948. A mathematical theory of communication. Bell System Technical Journal 27: 379–423.

    Google Scholar 

  • Statzner, B., J. A. Gore & V. H. Resh, 1988. Hydraulic stream ecology – observed patterns and potential applications. Journal of the North American Benthological Society 7: 307–360.

    Article  Google Scholar 

  • Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera, 2000. Invertébrés d’eau douce systématique, biologie, écologie. CNRS Editions, Paris, France.

    Google Scholar 

  • Tiemann, J. S., D. P. Gillette, M. L. Wildhaber & D. R. Edds, 2004. Effects of lowhead dams on riffle-dwelling fishes and macroinvertebrates in a midwestern river. Transactions of the American Fisheries Society 133: 705–717.

    Article  Google Scholar 

  • Tiemann, J. S., D. P. Gillette, M. L. Wildhaber & D. R. Edds, 2005. Effects of lowhead dams on the ephemeropterans, plecopterans, and trichopterans group in a North American river. Journal of Freshwater Ecology 20: 519–525.

    Google Scholar 

  • Tockner, K., C. T. Robinson & U. Uehlinger, 2009. Rivers of Europe. Academic Press, London, UK.

    Google Scholar 

  • Vannote, R. L. & B. W. Sweeney, 1980. Geographic analysis of thermal equilibria – a conceptual-model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. American Naturalist 115: 667–695.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. River continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Vieira-Lanera, R., 2000. Las larvas de los tricópteros de Galicia (Insecta: Trichoptera). Universidad de Santiago de Compostela, Santiago de Compostela.

    Google Scholar 

  • Vinson, M. R. & C. P. Hawkins, 1998. Biodiversity of stream insects: variation at local, basin, and regional scales. Annual Review of Entomology 43: 271–293.

    Article  CAS  PubMed  Google Scholar 

  • Wright, J. F. & K. L. Symes, 1999. A nine-year study of the macroinvertebrate fauna of a chalk stream. Hydrological Processes 13: 371–385.

    Article  Google Scholar 

  • Zar, J. H., 1984. Biostatistical Analysis. Prentice Hall, Englewwod, NJ, USA.

    Google Scholar 

Download references

Acknowledgments

This research was funded by the Environment Department of the Regional Government of Cantabria (Spain) within the umbrella of a global project for the implementation of the Water Framework Directive in the Cantabria Region, and by a research project financed by the 2004–2007 National Plan for Research in Science & Technology (Spanish Government; Project CGL2006-10282). We thank Russell and Fiona Death, Nuria Bonada, Sonja Stendera, Koen Martens and other anonymous reviewers who provided useful comments on previous versions of this manuscript. We are also grateful to Iago López Martínez and Pablo Ugarte Hernández de la Torre for their help in the field. This article constitutes part of Mario Alvarez-Cabria’s Ph.D. Thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Álvarez-Cabria.

Additional information

Handling editor: Sonja Stendera

Rights and permissions

Reprints and permissions

About this article

Cite this article

Álvarez-Cabria, M., Barquín, J. & Juanes, J.A. Macroinvertebrate community dynamics in a temperate European Atlantic river. Do they conform to general ecological theory?. Hydrobiologia 658, 277–291 (2011). https://doi.org/10.1007/s10750-010-0498-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0498-y

Keywords

Navigation