Skip to main content

Advertisement

Log in

Does ambient substrate composition influence consumer diversity effects on algal removal?

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Benthic substrates constitute an important habitat template for aquatic communities and may affect the contributions of benthic organisms to ecological processes. To test the effects of ambient substrate composition on the process of algae accrual and removal, we conducted an experiment to examine how substrate type influenced consumer richness effects. We hypothesized that algal removal from focal substrates (ceramic tiles) would be influenced by the surrounding ambient substrate through its effect on nutrient cycling and subsequent algal growth. We manipulated consumer richness in mesocosms at one or three species while holding consumer biomass constant. Aquatic consumers were an amphipod, a snail, and a water boatman, and ambient substrates were either sand or gravel. After 21 days, ambient substrate influenced epilithic algal accrual on tiles, affected physio-chemical parameters within mesocosms, and modified consumer behavior. Chlorophyll a was approximately 2× greater on control tiles surrounded by sand, and FPOM and turbidity were greater on sand than gravel when consumers were present. Substrate modified consumer behavior such that consumers congregated around focal substrates in sand, but dispersed around them in gravel. Consumers also had substrate-specific influences on epilithic chlorophyll, causing a decrease in sand and an increase in gravel. Algal assemblages on focal tiles were dominated by diatoms, and their composition responded to consumer richness and identity, but not substrate. Our data suggest that direct effects (e.g., consumptive removal of epilithon from focal tiles) were more pronounced in sand, whereas indirect effects (e.g., bioturbation and enhanced mixing) promoted algal accrual in gravel. These results show that algae production on exposed surfaces may change as underlying substrate composition changes, and that substrate type can alter consumer diversity effects on algal removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Biggs, B. J. F. & C. Kilroy, 2000. Stream Periphyton Monitoring Manual. NIWA, Christchurch.

    Google Scholar 

  • Broekhuizen, N., S. Parkyn & D. Miller, 2001. Fine sediment effects on feeding and growth in the invertebrate grazers Potamopyrgus antipodarum (Gastropoda, Hydrobiidae) and Deleatidium sp. (Ephemeroptera, Leptophlebiidae). Hydrobiologia 457: 125–132.

    Article  Google Scholar 

  • Caliman, A., J. F. Leal, F. A. Esteves, L. S. Carneiro, R. L. Bozelli & V. F. Farjalla, 2007. Functional bioturbator diversity enhances benthic-pelagic processes and properties in experimental microcosms. Journal of the North American Benthological Society 26: 450–459.

    Article  Google Scholar 

  • Cardinale, B. J., M. A. Palmer, C. M. Swan, S. Brooks & N. L. Poff, 2002. The influence of substrate heterogeneity on biofilm metabolism in a stream ecosystem. Ecology 83: 412–422.

    Article  Google Scholar 

  • Chaplot, V., 2007. Water and soil resources response to rising levels of atmospheric CO2 concentration and to changes in precipitation and air temperature. Journal of Hydrology 337: 159–171.

    Article  Google Scholar 

  • Covich, A. P., M. C. Austen, F. Barlocher, E. Chauvet, B. J. Cardinale, C. L. Biles, P. Inchausti, O. Dangles, M. Solan, M. O. Gessner, B. Statzner & B. Moss, 2004. The role of biodiversity in the functioning of freshwater and marine benthic ecosystems. Bioscience 54: 767–775.

    Article  Google Scholar 

  • Downes, B. J., P. S. Lake, E. S. G. Schreiber & A. Glaister, 2000. Habitat structure, resources and diversity: the separate effects of surface roughness and macroalgae on stream invertebrates. Oecologia 123: 569–581.

    Article  Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Leveque, R. J. Naiman, A. H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    Article  PubMed  Google Scholar 

  • Dudley, T. L. & C. M. D’Antonio, 1991. The effects of substrate texture, grazing, and disturbance on macroalgal establishment in streams. Ecology 72: 297–309.

    Article  Google Scholar 

  • Duffy, J. E., J. P. Richardson & E. A. Canuel, 2003. Grazer diversity effects on ecosystem functioning in seagrass beds. Ecology Letters 6: 637–645.

    Article  Google Scholar 

  • Franken, R. J. M., S. Batten, J. A. J. Beijer, J. J. P. Gardeniers, M. Scheffer & E. Peeters, 2006. Effects of interstitial refugia and current velocity on growth of the amphipod Gammarus pulex Linnaeus. Journal of the North American Benthological Society 25: 656–663.

    Article  Google Scholar 

  • Gainswin, B. E., W. A. House, B. S. C. Leadbeater & P. D. Armitage, 2006. Kinetics of phosphorus release from a natural mixed grain-size sediment with associated algal biofilms. Science of the Total Environment 360: 127–141.

    Article  CAS  PubMed  Google Scholar 

  • Gawne, B. & P. S. Lake, 1995. Effects of microspatial complexity on a herbivore epilithon interaction in an Australian upland stream. Freshwater Biology 33: 557–565.

    Article  Google Scholar 

  • Hoffman, A. L., J. D. Olden, J. B. Monroe, N. L. Poff, T. Wellnitz & J. A. Wiens, 2006. Current velocity and habitat patchiness shape stream herbivore movement. Oikos 115: 358–368.

    Article  Google Scholar 

  • Holomuzki, J. R. & J. D. Hoyle, 1990. Effect of predatory fish presence on habitat use and diel movement of the stream amphipod, Gammarus minus. Freshwater Biology 24: 509–517.

    Article  Google Scholar 

  • Lancaster, J., T. Buffin-Belanger, I. Reid & S. Rice, 2006. Flow- and substratum-mediated movement by a stream insect. Freshwater Biology 51: 1053–1069.

    Article  Google Scholar 

  • Lohrer, A. M., S. F. Thrush & M. M. Gibbs, 2004. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 431: 1092–1095.

    Article  CAS  PubMed  Google Scholar 

  • Loreau, M. & A. Hector, 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412: 72–76.

    Article  CAS  PubMed  Google Scholar 

  • McIntosh, A. R. & C. R. Townsend, 1996. Interactions between fish, grazing invertebrates and algae in a New Zealand stream: a trophic cascade mediated by fish induced changes to grazer behaviour? Oecologia 108: 174–181.

    Article  Google Scholar 

  • Mermillod-Blondin, F., M. Gerino, S. Sauvage & M. C. de Chatelliers, 2004. Influence of nontrophic interactions between benthic invertebrates on river sediment processes: a microcosm study. Canadian Journal of Fisheries and Aquatic Sciences 61: 1817–1831.

    Article  Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America, 3rd ed. Kendal/Hunt Publishing Co., Dubuque, Iowa.

    Google Scholar 

  • Oago, D. O. & E. O. Odada, 2007. Sediment impacts in Africa’s transboundary lake/river basins: case study of the east African great lakes. Aquatic Ecosystem Health & Management 10: 23–32.

    Article  Google Scholar 

  • Peckarsky, B. L., 1991. Habitat selection by stream-dwelling predatory stoneflies. Canadian Journal of Fisheries and Aquatic Sciences 48: 1069–1076.

    Google Scholar 

  • Poff, N. L., J. D. Olden, D. M. Merritt & D. M. Pepin, 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences of the United States of America 104: 5732–5737.

  • Poff, N. L. & J. V. Ward, 1990. Physical habitat template of lotic systems – recovery in the context of historical pattern of spatiotemporal heterogeneity. Environmental Management 14: 629–645.

    Article  Google Scholar 

  • Power, M. E., 1990. Effects of fish in river food webs. Science 250: 811–814.

    Article  CAS  PubMed  Google Scholar 

  • Power, M. E., 1992. Habitat heterogeneity and the functional-significance of fish in river food webs. Ecology 73: 1675–1688.

    Article  Google Scholar 

  • Romani, A. M. & S. Sabater, 2001. Structure and activity of rock and sand biofilms in a Mediterranean stream. Ecology 82: 3232–3245.

    Google Scholar 

  • Romani, A. M., A. Giorgi, V. Acuna & S. Sabater, 2004. The influence of substratum type and nutrient supply on biofilm organic matter utilization in streams. Limnology and Oceanography 49: 1713–1721.

    Article  CAS  Google Scholar 

  • Starry, O., J. Wazenbock & D. L. Danielopol, 1998. Tendency of the amphipod Gammarus roeseli Gervais to colonize coarse sediment habitats under fish predation pressure. International Review of Hydrobiology 83: 371–380.

    Article  Google Scholar 

  • Thorp, J. H. & A. P. Covich (eds), 2001. Ecology and Classification of North American Freshwater Invertebrates. Academic Press, San Diego.

    Google Scholar 

  • Vaughn, C. C., D. E. Spooner & H. S. Galbraith, 2007. Context-dependent species identity effects within a functional group of filter-feeding bivalves. Ecology 88: 1654–1662.

    Article  PubMed  Google Scholar 

  • Ward, J. V., 1992. Aquatic Insect Ecology. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1995. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regulated Rivers: Research & Management 11: 105–119.

    Article  Google Scholar 

  • Wellnitz, T. & N. L. Poff, 2006. Herbivory, current velocity and algal regrowth: how does periphyton grow when the grazers have gone? Freshwater Biology 51: 2114–2123.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Evan Weiher for help with the statistical analyses and Katelin Holm for assistance with sample processing. Comments by William Hintz, Eric Merten, and Evan Weiher improved early drafts of this manuscript. This was an undergraduate research project supported by a Faculty/Student Research Collaboration grant to TW and MT from the University of Wisconsin-Eau Claire, and a National Science Foundation CAREER grant (DEB-0642512) to TW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Wellnitz.

Additional information

Handling editor: S. M. Thomaz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wellnitz, T., Troia, M. & Ring, M. Does ambient substrate composition influence consumer diversity effects on algal removal?. Hydrobiologia 652, 15–22 (2010). https://doi.org/10.1007/s10750-010-0312-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0312-x

Keywords

Navigation