Skip to main content
Log in

Lake water level increase during spring affects the breeding success of bream Abramis brama (L.)

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In Lake Constance, Eurasian bream Abramis brama (L.) spawn in very shallow littoral areas by the beginning of May. They attach their adhesive eggs to pebble and cobble substratum at <40 cm depth. Increasing water levels before spawning inundate bare substratum to which bream eggs may attach better than to deeper substratum covered by epilithon. Consequently, the water level increase prior to spawning should determine the amount of pristine spawning substratum available to bream and thus influence their breeding success. In order to test this hypothesis, the influence of hydrology and climate on the abundance of age-0 bream was combined with the results from field investigations on the egg survival and abundance of age-0 bream. A strong positive correlation between the mean water level increase during the spawning season of bream (April–May) and the abundance of juvenile bream was found. In contrast, the absolute water level during spawning and during the nursery stage in summer, the cumulative temperature during the egg, larval and juvenile stages and two North Atlantic Oscillation (NAO) indices did not affect the abundance of juvenile bream. The field investigations confirmed that bream eggs attach better to and have higher survival rates on bare substratum than on substratum with epilithon cover. Accordingly, eggs within a spawning habitat of bream were most abundant between 10 and 20 cm depth, where the epilithon cover was lower than at depths exceeding 30 cm. The results of this study confirm an adverse influence of epilithon cover on the attachment and subsequent survival of bream eggs and emphasize the importance of spring inundations for the successful breeding of the bream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aalto, S. K. & G. E. Newsome, 1993. Winds and the demic structure of a population of yellow perch (Perca flavescens). Canadian Journal of Fisheries & Aquatic Sciences 50: 496–501.

    Article  Google Scholar 

  • Argillier, C., N. Poulet & P. Irz, 2004. Effect of meteorological conditions and water level fluctuations on the year-class strength of pikeperch (Sander lucioperca L.) and perch (Perca fluviatilis L.) in a French reservoir. Ecohydrology & Hydrobiology 4: 441–448.

    Google Scholar 

  • Clark, M. E., K. A. Rose, J. A. Chandler, T. J. Richter, D. J. Orth & W. Van Winkle, 1998. Simulating smallmouth bass reproductive success in reservoirs subject to water level fluctuations. Environmental Biology of Fishes 51: 161–174.

    Article  Google Scholar 

  • Clark, M. E., K. A. Rose, J. A. Chandler, T. J. Richter, D. J. Orth & W. Van Winkle, 2008. Water-level fluctuation effects on Centrarchid reproductive success in reservoirs: a modelling analysis. North American Journal of Fisheries Management 28: 1138–1156.

    Article  Google Scholar 

  • Dziekonska, J., 1956. Studies on embryonic development of fish. I. Observations on the spawning and the embryonic development of bream in the Vistula Lagoon. Polskie Archivum Hydrobiologii 3: 291–305.

    Google Scholar 

  • Fischer, P. & R. Eckmann, 1997. Spatial distribution of littoral fish species in a large European lake, Lake Constance, Germany. Archiv für Hydrobiologie 140: 91–116.

    Google Scholar 

  • Fisher, S. J., K. L. Pope, L. J. Templeton & D. W. Willis, 1996. Yellow perch spawning habitats in Pickerel Lake, south Dakota. The Prairie Naturalist 28: 65–75.

    Google Scholar 

  • Fulford, R. S., J. A. Rice, T. J. Miller & F. P. Binkowski, 2006a. Elucidating patterns of size-dependent predation on larval yellow perch (Perca flavescens) in Lake Michigan: an experimental and modelling approach. Canadian Journal of Fisheries & Aquatic Sciences 63: 11–27.

    Article  Google Scholar 

  • Fulford, R. S., J. A. Rice, T. J. Miller, F. P. Binkowski, J. M. Dettmers & B. Belonger, 2006b. Foraging selectivity by larval yellow perch (Perca flavescens): implications for understanding recruitment in small and large lakes. Canadian Journal of Fisheries & Aquatic Sciences 63: 28–42.

    Article  Google Scholar 

  • Gafny, S., A. Gasith & M. Goren, 1992. Effect of water level fluctuation on shore spawning of Mirogrex terraesanctae (Steinitz), (Cyprinidae) in Lake Kineret, Israel. Journal of Fish Biology 41: 863–871.

    Article  Google Scholar 

  • Gerstmeier, R. & T. Romig, 2003. Die Süßwasserfische Europas. Kosmos, Stuttgart.

    Google Scholar 

  • Herzig, A. & H. Winkler, 1986. The influence of temperature on the embryonic development of three cyprinid fishes, Abramis brama, Chalcalburnus chalcoides mento and Vimba vimba. Journal of Fish Biology 28: 171–181.

    Article  Google Scholar 

  • Hladik, M. & J. Kubecka, 2004. The effect of water level fluctuation on tributary spawning migration of reservoir fish. Ecohydrology & Hydrobiology 4: 449–457.

    Google Scholar 

  • Hurrell, J. W., Y. Kushnir, G. Ottersen & M. Visbeck, 2003. An overview of the North Atlantic Oscillation. In Hurrell, J. W., Y. Kushnir, G. Ottersen & M. Visbeck (eds), The North Atlantic Oscillation: Climatic Significance and Environmental Impact. American Geophysical Union, Washington DC: 1–30.

    Google Scholar 

  • Jennings, S., M. J. Kaiser & J. D. Reynolds, 2001. Marine Fisheries Ecology. Blackwell Science, Oxford.

    Google Scholar 

  • Kafemann, R., R. Thiel, J. E. Finn & R. Neukamm, 1998. The role of freshwater habitats for the reproduction of common bream Abramis brama (L.) in a brackish water system. Polskie Archivum Hydrobiologii 45: 225–244.

    Google Scholar 

  • Kahl, U., S. Hülsmann, R. J. Radke & J. Benndorf, 2008. The impact of water level fluctuations on the year class strength of roach: implications for fish stock management. Limnologica 38: 258–268.

    Google Scholar 

  • KLIWA, 2006. Regionale Klimaszenarien für Süddeutschland. KLIWA, Karlsruhe.

    Google Scholar 

  • KLIWA, 2007. Zum Einfluss des Klimas auf den Bodensee. KLIWA, Karlsruhe.

    Google Scholar 

  • Kucharczyk, D., M. Luczynski, R. Kujawa & P. Czerkies, 1997. Effect of temperature on embryonic and larval development of bream (Abramis brama L.). Aquatic Sciences 59: 214–224.

    Google Scholar 

  • Leggett, W. C. & E. Deblois, 1994. Recruitment in marine fishes: is it regulated by starvation and predation in the egg and larval stages? Netherlands Journal of Sea Research 32: 119–134.

    Article  Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and phaeopigments: spectrometric equations. Limnology & Oceanography 12: 343–346.

    CAS  Google Scholar 

  • Lozan, J. L. & H. Kausch, 1998. Angewandte Statistik für Naturwissenschaftler. Blackwell, Berlin.

    Google Scholar 

  • Luft, G., 1993. Langfristige Veränderungen der Bodensee-Wasserstände und mögliche Auswirkungen auf Erosion und Ufervegetation. In Ostendorp, W. & P. Krumscheid-Plankert (eds), Seeuferzerstörung und Seeuferrenaturierung in Mitteleuropa. Schweitzerbart, Stuttgart: 1–75.

    Google Scholar 

  • Mehner, T., M. Diekmann, U. Braemick & R. Lemcke, 2005. Composition of fish communities in German lakes as related to lake morphology, trophic state, shore structure and human-use intensity. Freshwater Biology 50: 70–85.

    Article  CAS  Google Scholar 

  • Mills, C. A. & R. H. K. Mann, 1985. Environmentally-induced fluctuations in year class strength and their implications for management. Journal of Fish Biology 27(Suppl. A): 209–226.

    Article  Google Scholar 

  • Mürle, U., J. Ortlepp & P. Rey, 2004. Der Bodensee: Zustand-Fakten-Perspektiven. Internationale Gewässerschutzkommission für den Bodensee (IGKB), Bregenz.

    Google Scholar 

  • Nõges, P. & A. Jarvet, 2005. Climate driven changes in the spawning of roach (Rutilus rutilus (L.)) and bream (Abramis brama (L.)) in the Estonian part of the Narva River basin. Boreal Environment Research 10: 45–55.

    Google Scholar 

  • Nunn, A. D., I. G. Cowx, P. A. Frear & J. P. Harvey, 2003. Is water temperature an adequate predictor of recruitment success in cyprinid fish populations in lowland rivers? Freshwater Biology 48: 579–588.

    Article  Google Scholar 

  • Ostendorp, W., K. Schmieder & K. Jöhnk, 2004. Assessment of human pressures and their hydromorphological impacts in lakeshores in Europe. Ecohydrology & Hydrobiology 4: 379–395.

    Google Scholar 

  • Ozen, O. & R. L. Noble, 2002. Relationship between water level fluctuations and largemouth bass spawning in a Puerto Rico reservoir. In Philipp, D. P. & M. S. Ridgway (eds), Black Bass: Ecology, Conservation, and Management. American Fisheries Society, Bethesda: 213–220.

    Google Scholar 

  • Paxton, C. G. M., I. J. Winfield, J. M. Fletcher, D. G. George & D. P. Hewitt, 2004. Biotic and abiotic influences on the recruitment of male perch in Windermere, U.K. Journal of Fish Biology 65: 1622–1642.

    Article  Google Scholar 

  • Peters, L., N. Scheifhacken, M. Kahlert & K.-O. Rothhaupt, 2005. An efficient in situ method for sampling periphyton in lakes and streams. Archiv für Hydrobiologie 163: 133–141.

    Article  Google Scholar 

  • Peters, L., M. A. Wetzel, W. Traunspurger & K.-O. Rothhaupt, 2007. Epilithic communities in a lake littoral zone: the role of water-column transport and habitat development for dispersal and colonization of meiofauna. Journal of the North American Benthological Society 26: 232–243.

    Article  Google Scholar 

  • Poncin, P., J. C. Philippart & J. C. Ruwet, 1996. Territorial and non-territorial spawning behaviour in the bream. Journal of Fish Biology 49: 622–626.

    Article  Google Scholar 

  • Rupp, R. S., 1965. Shore-spawning and survival of eggs of American Smelt. Transactions of the American Fisheries Society 94: 160–168.

    Google Scholar 

  • Stoll, S., P. Fischer, P. Klahold, N. Scheifhacken, H. Hofmann & K.-O. Rothhaupt, 2008. Effects of water depth and hydrodynamics on the growth and distribution of juvenile cyprinids in the littoral zone of a large pre-alpine lake. Journal of Fish Biology 72: 1001–1022.

    Article  Google Scholar 

  • Straile, D. & N. C. Stenseth, 2007. The North Atlantic Oscillation and ecology: links between historical time-series, and lessons regarding future climate warning. Climate Research 34: 259–262.

    Article  Google Scholar 

  • Wilcox, D. A. & J. E. Meeker, 1992. Implications for faunal habitat related to altered macrophyte structure in regulated lakes in northern Minnesota. Wetlands 12: 192–203.

    Article  Google Scholar 

  • Winfield, I. J., J. M. Fletcher & J. B. James, 2004. Modelling the impacts of water level fluctuations on the population dynamics of whitefish (Coregonus lavaretus (L.) in Haweswater, UK. Ecohydrology & Hydrobiology 4: 409–416.

    Google Scholar 

  • Wittkugel, C., 2002. Entwicklung eines Laichhabitatsindexes für uferlaichende Fischarten im Bodensee. Dissertation, University Konstanz, Konstanz.

Download references

Acknowledgements

We thank Alfred Sulger for the catch of parent bream, Bärbel Beese and Myriam Schmid for Chl a determination, Martin Wolf for technical support, and Iris Töpfer and Diana Schleuter for assistance in the field. Data on water temperature in May were provided by the Institut für Seenforschung, Langenargen and the International Water Commission of Lake Constance (IGKB). This study was supported by the German Research Foundation (DFG) within the Collaborative Research Center 454 ‘Littoral Zone of Lake Constance’ and a personal grant to Stefan Stoll by the German National Academic Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Nikolaus Probst.

Additional information

Handling editor: J. A. Cambray

Rights and permissions

Reprints and permissions

About this article

Cite this article

Probst, W.N., Stoll, S., Peters, L. et al. Lake water level increase during spring affects the breeding success of bream Abramis brama (L.). Hydrobiologia 632, 211–224 (2009). https://doi.org/10.1007/s10750-009-9842-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9842-5

Keywords

Navigation