Skip to main content
Log in

The predatory role of white shrimp (Litopenaeus setiferus) in seasonal declines of subtidal macrobenthos

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The overall purpose of this study was to develop a quantitative model to assess the influence of L. setiferus predation on subtidal macrobenthic abundance cycles in an estuarine creek system. Subtidal macrobenthic populations in temperate marine soft-bottom environments are known to undergo seasonal abundance cycles. Although the factors responsible for driving these seasonal shifts in abundance are difficult to identify, both environmental and biological factors have received credit. Juvenile white shrimp (Litopenaeus setiferus) are seasonally abundant epibenthic predators in the North Inlet estuary that have significant influence upon estuarine macrobenthic densities. Data generated from field and laboratory studies were combined with 20 years of long-term monitoring data to simulate seasonal variations in macrobenthos abundance under different levels of L. setiferus predation. Model simulations generated clear reductions in subtidal macrobenthos densities, confirming the role of L. setiferus as major consumers of macrobenthos. Model uncertainty was small, and model accuracy increased with shrimp density. In years with low or medium shrimp densities, predicted macrobenthos densities tended to be higher than those observed, yet predicted rates of decline still paralleled long-term observations. Model simulations best matched observed data for the representative high shrimp density year tested. Results indicate that variability in multiple factors, including L. setiferus predation, likely control macrobenthos abundance cycles. Predation by earlier-arriving epibenthic feeders may drive initial macrobenthos declines earlier in the year, with L. setiferus predation then intensifying and extending these declines throughout the summer and fall. This modeling approach is an important step toward understanding the role of multiple factors driving seasonal macrobenthos dynamics, and the L. setiferus population was tractable for examining the importance of epibenthic predation on these organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4

Similar content being viewed by others

References

  • Albertoni, E. F., C. Palma-Silva & F. D. Esteves, 2003. Natural diet of three species of shrimp in a tropical coastal lagoon. Brazilian Archives of Biology and Technology 46: 395–403.

    Article  Google Scholar 

  • Allen, D. M., S. K. Service & M. V. Ogburn-Matthews, 1992. Factors influencing the collection efficiency of estuarine fishes. Transactions of the American Fisheries Society 121: 234–244.

    Article  Google Scholar 

  • Allen, D. M., Ogburn-Matthews, V., & Kenny, P. (2004) University of South Carolina Belle W. Baruch Institute for Marine and Coastal Sciences, and NOAA North Inlet-Winyah Bay National Estuarine Research Reserve. Long-Term Low Tide Monitoring Data for Fishes, Shrimps, & Crabs in Oyster Landing Creek, North Inlet estuary, Georgetown, South Carolina: 1983–2003. Data Archives Website: http://links.baruch.sc.edu/Data/OLLT.Nekton/index.html.

  • Ambrose Jr., W. G., 1984. Role of predatory infauna in structuring marine soft bottom communities. Marine Ecology Progress Series 17: 109–115.

    Article  Google Scholar 

  • Beseres, J. J. (2006) Ecological impacts of predation by white shrimp (Litopenaeus setiferus) on subtidal macrobenthos in North Inlet, SC, deduced from field, laboratory, & modeling studies. Dissertation, 151 pp, University of South Carolina, Columbia.

  • Beseres, J. J. & R. J. Feller, 2007a. Importance of predation by white shrimp Litopenaeus setiferus on estuarine subtidal macrobenthos. Journal of Experimental Marine Biology and Ecology 344: 193–205.

    Article  Google Scholar 

  • Beseres, J. J. & R. J. Feller, 2007b. Changes in the spatial distribution of subtidal macrobenthos due to predation by white shrimp (Litopenaeus setiferus). Estuaries & Coasts 30: 591–600.

    Google Scholar 

  • Beseres Pollack, J., Mroch, R. M., & Feller, R. J. (2008) Juvenile white shrimp predation on macrobenthic and zooplanktonic prey. Journal of Shellfish Research 27(5): 1247–1253.

    Article  Google Scholar 

  • Beukema, J. J., P. J. C. Honkoop & R. Dekker, 1998. Recruitment in Macoma balthica after mild and cold winters and its possible control by egg production and shrimp predation. Hydrobiologia 376: 23–34.

    Article  Google Scholar 

  • Beukema, J. J., K. Essink & R. Dekker, 2000. Long-term observations on the dynamics of three species of polychaetes living on tidal flats of the Wadden Sea: the role of weather and predator–prey interactions. Journal of Animal Ecology 69: 31–44.

    Article  Google Scholar 

  • Blegvad, H., 1925. Continued studies on the quantity of fish food in the sea bottom. Report of Danish Biological Station 31: 25–56.

    Google Scholar 

  • Blenckner, T., 2005. A conceptual model of climate-related effects on lake ecosystems. Hydrobiologia 533: 1–14.

    Article  Google Scholar 

  • Cheng, I. J., J. S. Levinton, M. McCartney, D. Martinez & M. J. Weissburg, 1993. A bioassay approach to seasonal variation in the nutritional value of sediment. Marine Ecology Progress Series 94: 275–285.

    Article  Google Scholar 

  • Christian, R. R. & R. L. Wetzel, 1991. Synergism between research and simulation models of estuarine microbial food webs. Microbial Ecology 22: 111–125.

    Article  Google Scholar 

  • Cloern, J. E. & F. H. Nichols, 1985. Time scales and mechanisms of estuarine variability, a synthesis from studies of San Francisco Bay. Hydrobiologia 129: 229–237.

    Article  Google Scholar 

  • Commito, J. A., C. A. Currier, L. R. Kane, K. A. Reinsel & I. M. Ulm, 1995. Dispersal dynamics of the bivalve Gemma gemma in a patchy environment. Ecological Monographs 65: 1–20.

    Article  Google Scholar 

  • Coull, B. C., 1985. Long-term variability of estuarine meiobenthos—an 11 year study. Marine Ecology Progress Series 24: 205–218.

    Article  Google Scholar 

  • Dall, W., Hill, B. J., Rothlisberg, P. C., & Sharples, D. J. (1990) The biology of the Penaeidae. Advances in Marine Biology 27: 489

    Google Scholar 

  • Dauer, D. M., R. M. Ewing, G. H. Tourtellotte, W. T. Harlan, J. W. Sourbeer & H. R. Barker, 1982. Predation, resource limitation and the structure of benthic infaunal communities of the lower Chesapeake Bay—benthic studies of the lower Chesapeake Bay 1. Internationale Revue der Gesamten Hydrobiologie 67: 477–489.

    Google Scholar 

  • Deegan, L. A., J. L. Bowen, D. Drake, J. W. Fleeger, C. T. Friedrichs, K. A. Galvan, J. E. Hobble, C. Hopkinson, D. S. Johnson, J. M. Johnson, L. E. Lemay, E. Miller, B. J. Peterson, C. Picard, S. Sheldon, M. Sutherland, J. Vallino & R. S. Warren, 2007. Susceptibility of salt marshes to nutrient enrichment and predator removal. Ecological Applications 17: S42–S63.

    Article  Google Scholar 

  • DeWitt, T. H. & J. S. Levinton, 1984. Disturbance, emigration, and refugia: How the mudsnail, Ilyanassa obsoleta, affects the habitat distribution of an epifaunal amphipod, Microdeutopus gryllotalpa. Journal of Experimental Marine Biology and Ecology 92: 97–113.

    Article  Google Scholar 

  • Ellis, M. J. & B. C. Coull, 1989. Fish predation on meiobenthos—field experiments with juvenile spot Leiostomus xanthurus Lacépède. Journal of Experimental Marine Biology and Ecology 130: 19–32.

    Article  Google Scholar 

  • Feller, R. J. & B. C. Coull, 1995. Non-selective ingestion of meiobenthos by juvenile spot (Leiostomus xanthurus) (Pisces) and their daily ration. Vie Milieu 45(1): 49–59.

    Google Scholar 

  • Feller, R. J., Service, S. K, & McCutchen, R. (2004) Long-Term Ecological Research (LTER) Macrobenthos Data for the North Inlet estuary, Georgetown, South Carolina: 1981–1992. Belle W. Baruch Institute for Marine and Coastal Sciences, University of South Carolina, Data Archives Website: http://links.baruch.sc.edu/Data/MACRO/index.html.

  • Fleeger, J. W., D. S. Johnson, K. A. Galvan & L. A. Deegan, 2008. Top-down and bottom-up control of infauna varies across the saltmarsh landscape. Journal of Experimental Marine Biology and Ecology 357: 20–34.

    Article  CAS  Google Scholar 

  • Gentleman, W., 2002. A chronology of plankton dynamics in silico: how computer models have been used to study marine ecosystems. Hydrobiologia 480: 69–85.

    Article  Google Scholar 

  • Haertel-Borer, S. S., D. M. Allen & R. F. Dame, 2004. Fishes and shrimps are significant sources of dissolved inorganic nutrients in intertidal salt marsh creeks. Journal of Experimental Marine Biology and Ecology 311: 79–99.

    Article  CAS  Google Scholar 

  • Holland, A. F., 1985. Long-term variation of macrobenthos in a mesohaline region of Chesapeake Bay. Estuaries 8: 93–113.

    Article  Google Scholar 

  • Hunter, J. & R. J. Feller, 1987. Immunological dietary analysis of two penaeid shrimp species from a South Carolina tidal creek. Journal of Experimental Marine Biology and Ecology 107: 61–70.

    Article  Google Scholar 

  • Johnson, R. K. & T. Wiederholm, 1992. Pelagic-benthic coupling—the importance of diatom interannual variability for population oscillations of Monoporeia affinis. Limnology and Oceanography 37: 1596–1607.

    Article  Google Scholar 

  • Junkins, R., B. Kelaher & J. Levinton, 2006. Contributions of adult oligochaete emigration and immigration in a dynamic soft-sediment community. Journal of Experimental Marine Biology and Ecology 330: 208–220.

    Article  Google Scholar 

  • Kelaher, B. P. & J. S. Levinton, 2003. Variation in detrital enrichment causes spatio-temporal variation in soft-sediment assemblages. Marine Ecology Progress Series 261: 85–97.

    Article  Google Scholar 

  • Kneib, R. T., 1984. Patterns of invertebrate distribution and abundance in the intertidal salt marsh: causes and questions. Estuaries 7: 392–412.

    Article  Google Scholar 

  • Kneib, R. T., 1987. Predation risk and use of intertidal habitats by young fishes and shrimp. Ecology 68: 379–386.

    Article  Google Scholar 

  • Kneib, R. T. & M. K. Knowlton, 1995. Stage-structured interactions between seasonal and permanent residents of an estuarine nekton community. Oecologia 103: 425–434.

    Article  Google Scholar 

  • Levin, S. A., 1992. The problem of pattern and scale in ecology. Ecology 73: 1943–1967.

    Article  Google Scholar 

  • Levinton, J. S. & S. Stewart, 1988. Effects of sediment organics, detrital input, and temperature on demography, production, and body size of a deposit feeder. Marine Ecology Progress Series 49: 259–266.

    Article  Google Scholar 

  • Mansour, R. A. & R. N. Lipcius, 1991. Density-dependent foraging and mutual interference in blue crabs preying upon infaunal clams. Marine Ecology Progress Series 72: 239–246.

    Article  Google Scholar 

  • Mayer, M. A. (1985) Ecology of juvenile white shrimp, Penaeus setiferus Linnaeus, in the salt marsh habitat. Master of Science, Georgia Institute of Technology.

  • McCauley, E., W. W. Murdoch, R. M. Nisbet & W. S. C. Gurney, 1990. The physiological ecology of Daphnia: development of a model of growth and reproduction. Ecology 71: 703–715.

    Article  Google Scholar 

  • McCauley, E., W. G. Wilson & A. M. De Roos, 1993. Dynamics of age-structured and spatially structured predator–prey interactions: individual-based models and population-level formulations. The American Naturalist 142: 412–442.

    Article  CAS  PubMed  Google Scholar 

  • McTigue, T. A. & R. J. Zimmerman, 1998. The use of infauna by juvenile Penaeus aztecus Ives and Penaeus setiferus (Linnaeus). Estuaries 21: 160–175.

    Article  Google Scholar 

  • Nunes, A. J. P. & G. J. Parsons, 2000. Effects of the Southern brown shrimp, Penaeus subtilis, predation and artificial feeding on the population dynamics of benthic polychaetes in tropical pond enclosures. Aquaculture 183: 125–147.

    Article  Google Scholar 

  • Palmer, M. A., 1988. Epibenthic predators and marine meiofauna—separating predation, disturbance, and hydrodynamic effects. Ecology 69: 1251–1259.

    Article  Google Scholar 

  • Posey, M. H. & A. H. Hines, 1991. Complex predator–prey interactions within an estuarine benthic community. Ecology 72: 2155–2169.

    Article  Google Scholar 

  • Posey, M. H., C. Powell, L. Cahoon & D. Lindquist, 1995. Top-down vs. bottom-up control of benthic community composition on an intertidal tideflat. Journal of Experimental Marine Biology and Ecology 185: 19–31.

    Article  Google Scholar 

  • Posey, M. H., T. D. Alphin, L. Cahoon, D. Lindquist & M. E. Becker, 1999. Interactive effects of nutrient additions and predation on infaunal communities. Estuaries 22: 785–792.

    Article  Google Scholar 

  • Posey, M. H., T. D. Alphin & L. Cahoon, 2006. Benthic community responses to nutrient enrichment and predator exclusion: influence of background nutrient concentrations and interactive effects. Journal of Experimental Marine Biology and Ecology 330: 105–118.

    Article  CAS  Google Scholar 

  • Raffaelli, D., A. Conacher, H. McLachlan & C. Emes, 1989. The role of epibenthic crustacean predators in an estuarine food web. Estuarine, Coastal, and Shelf Science 28: 149–160.

    Article  Google Scholar 

  • Reise, K., 1977. Predation pressure and community structure of an intertidal soft-bottom fauna. In Keegan, B. F., P. O. Ceidigh & P. J. S. Boaden (eds.), Biology of Benthic Organisms. Pergamon, NY: 513–519.

    Google Scholar 

  • Renaud, P. E., D. A. Syster & W. G. Ambrose, 1999. Recruitment patterns of continental shelf benthos off North Carolina, USA: effects of sediment enrichment and impact on community structure. Journal of Experimental Marine Biology and Ecology 237: 89–106.

    Article  Google Scholar 

  • Sanders, H. L., 1958. Benthic studies in Buzzards Bay I. Animal–sediment relationships. Limnology and Oceanography 3: 245–258.

    Google Scholar 

  • Schoener, T. W., 1989. Food webs from the small to the large. Ecology 70: 1559–1589.

    Article  Google Scholar 

  • Schwartzlose, R. A., J. Alheit, A. Bakun, T. R. Baumgartner, R. Cloete, R. J. M. Crawford, W. J. Fletcher, Y. Green-Ruiz, E. Hagen, T. Kawasaki, D. Lluch-Belda, S. E. Lluch-Cota, A. D. MacCall, Y. Matsuura, M. O. Nevarez-Martinez, R. H. Parris, C. Roy, R. Serra, K. V. Shust, M. N. Ward & J. Zuzunaga, 1999. Worldwide large-scale fluctuations of sardine and anchovy populations. South African Journal of Marine Science 21: 289–347.

    Google Scholar 

  • Seitz, R. D. & R. N. Lipcius, 2001. Variation in top-down and bottom-up control of marine bivalves at differing spatial scales. ICES Journal of Marine Science 58: 689–699.

    Article  Google Scholar 

  • Service, S. K. & R. J. Feller, 1992. Long-term trends of subtidal macrobenthos in North Inlet, South Carolina. Hydrobiologia 231: 13–40.

    Article  Google Scholar 

  • Service, S. K., S. E. Stancyk, B. C. Coull & D. G. Edwards, 1992. Recruitment of polychaetes and bivalves: long-term assessment of predictability in a soft-bottom habitat. Marine Ecology Progress Series 87: 227–238.

    Google Scholar 

  • Stehlik, L. L. & C. J. Meise, 2000. Diet of winter flounder in a New Jersey estuary: ontogenetic change and spatial variation. Estuaries 23: 381–391.

    Article  Google Scholar 

  • Sugimoto, T. & K. Tadokoro, 1997. Interannual-interdecadal variations in zooplankton biomass, chlorophyll concentration and physical environment in the subarctic Pacific and Bering Sea. Fisheries Oceanography 6: 74–93.

    Article  Google Scholar 

  • Tenore, K. R., 1972. Macrobenthos of the Pamlico River estuary, North Carolina. Ecological Monographs 42: 51–69.

    Article  Google Scholar 

  • Valiela, I., 1995. Marine Ecological Processes, Vol. 2. Springer-Verlag, New York.

    Google Scholar 

  • Virnstein, R. W., 1977. The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay. Ecology 58: 1199–1217.

    Article  Google Scholar 

  • Virnstein, R. W., 1979. Predation on estuarine infauna: response patterns of component species. Estuaries 2: 69–86.

    Article  Google Scholar 

  • Whitlatch, R. B., 1977. Seasonal changes in the community structure of the macrobenthos inhabiting the intertidal sand and mud flats of Barnstable Harbor, Massachusetts. Biological Bulletin 152: 275–294.

    Article  Google Scholar 

  • Wilson, E. O. & W. H. Bossert, 1971. A Primer of Population Biology. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Wilson, W. G., A. M. Deroos & E. Mccauley, 1993. Spatial instabilities within the diffusive Lotka-Volterra system: individual-based simulation results. Theoretical Population Biology 43: 91–127.

    Article  Google Scholar 

  • Wiltse, W. I., K. H. Foreman, J. M. Teal & I. Valiela, 1984. Effects of predators and food resources on the macrobenthos of salt marsh creeks. Journal of Marine Research 42: 923–942.

    Article  Google Scholar 

  • Woodin, S. A., 1974. Polychaete abundance patterns in a marine soft-sediment environment: the importance of biological interactions. Ecological Monographs 44: 171–187.

    Article  Google Scholar 

  • Zimmerman, R. J., T. J. Minello & L. P. Rozas, 2000. Salt marsh linkages to productivity of penaeid shrimps and blue crabs in the northern Gulf of Mexico. In Weinstein, M. P. & D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Dordrecht: 293–314.

    Google Scholar 

Download references

Acknowledgments

This research was conducted under a Graduate Research Fellowship award from the North Inlet–Winyah Bay National Estuarine Research Reserve to J. B. P. from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration. We appreciate the constructive comments and advice of Drs. D. M. Allen, H.-C. Kim, R. T. Kneib, S. E. Stancyk and S. A. Woodin. We are grateful to the Baruch Marine Field Laboratory and the North Inlet-Winyah Bay NERR for the use of their facilities and general support, and to K. Abbott at SeaPerfect Aquaculture Farm in Folly Beach, SC, for regular contributions of Mercenaria for the functional response experiments. We thank M. Beseres and J. Pollack for technical assistance with the functional response feeding experiments. This study partially fulfills requirements of J. B. P.’s Ph.D. studies in the Marine Science Program at the University of South Carolina. This is Contribution No. 1496 from the Belle W. Baruch Institute of Marine and Coastal Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Beseres Pollack.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beseres Pollack, J., Buzzelli, C.P. & Feller, R.J. The predatory role of white shrimp (Litopenaeus setiferus) in seasonal declines of subtidal macrobenthos. Hydrobiologia 627, 117–128 (2009). https://doi.org/10.1007/s10750-009-9719-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9719-7

Keywords

Navigation