Skip to main content

Advertisement

Log in

Response of fish assemblages to water quality in boreal rivers

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The relationship between fluvial fish assemblages and environmental variables including water quality was studied by nonmetric multidimensional scaling (NMS) and generalised regression neural network (GRNN). Fish assemblages in the studied boreal rivers in Central Finland showed a higher response to water quality than to other environmental variables such as altitude and river width. Of the water quality parameters, total phosphorus, oxygen saturation in winter and solids had the highest influence on fish assemblages. Brown trout (Salmo trutta L.) responded to water quality strongly by favouring pristine waters. Among other fish species, the responses were lighter, and the relative contribution of environmental variables varied. Percentage of fishless sites, i.e. no catch in electrofishing, was 4.4% when pH ≥ 6, and 38.2% when pH < 6. However, the most effective way to influence the fish assemblage composition, and to raise the fish-based FIFI integrity index value, would be to reduce loading of solids and phosphorus, rather than depressing acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahtiainen, M. & P. Huttunen, 1999. Long-term effects of forestry managements on water quality and loading in brooks. Boreal Environment Research 4: 101–114.

    CAS  Google Scholar 

  • Andreasson, S., 1972. Distribution of Cottus poecilopus Heckel and C. gobio L. (Pisces) in Scandinavia. Zoologica Scripta 1: 69–78.

    Article  Google Scholar 

  • Berkman, H. E. & C. F. Rabeni, 1987. Effect of siltation on stream fish communities. Environmental Biology of Fishes 18(4): 285–294.

    Article  Google Scholar 

  • Bishop, C. M., 1995. Neural Networks for Pattern Recognition. Oxford University Press, Oxford.

    Google Scholar 

  • Brown, D. J. A., 1983. Effect of calcium and aluminium concentrations on the survival of brown trout (Salmo trutta) at low pH. Bulletin of Environmental Contamination and Toxicology 30: 582–587.

    Article  CAS  PubMed  Google Scholar 

  • Cigizoglu, H. K., 2005. Application of generalized regression neural networks to intermittent flow forecasting and estimation. Journal of Hydrologic Engineering 10: 336–341.

    Article  Google Scholar 

  • Edwards, R. W. & D. T. Crisp, 1982. Ecological implications of river regulation in the United Kingdom. In Bathurst, R. D., J. C. Hey & C. R. Thorne (eds), Gravel Bed Rivers. Fluvial Processes, Engineering and Management. Wiley, New York: 843–865.

    Google Scholar 

  • Eklöv, A. G., L. A. Greenberg, C. Brönmark, P. Larsson & O. Berglund, 1998. Response of stream fish to improved water quality: a comparison between the 1960s and 1990s. Freshwater Biology 40: 771–782.

    Article  Google Scholar 

  • Eklöv, A. G., L. A. Greenberg, C. Brönmark, P. Larsson & O. Berglund, 1999. Influence of water quality, habitat and species richness on brown trout populations. Journal of Fish Biology 54: 33–43.

    Article  Google Scholar 

  • Fältmarsch, R. M., M. E. Åström & K.-M. Vuori, 2008. Environmental risks of metals mobilised from acid sulphate soils in Finland: a literature review. Boreal Environment Research 13: 444–456.

    Google Scholar 

  • FAME Consortium, 2004. Manual for the application of the European Fish Index – EFI. A fish-based method to assess the ecological status of European rivers in support of the Water Framework Directive. Version 1.1, January 2005. Available from http://fame.boku.ac.at [accessed 28 August 2009].

  • Ibarra, A. A., F. Dauba & P. Lim, 2005. Influence of non-point source pollution on riverine fish assemblages in South West France. Ecotoxicology 14: 573–588.

    Article  PubMed  Google Scholar 

  • Joukainen, S. & M. Yli-Halla, 2003. Environmental impacts and acid loads from deep sulfidic layers of two well-drained acid sulfate soils in western Finland. Agriculture, Ecosystems & Environment 95: 297–309.

    Article  Google Scholar 

  • Kim, M. Y., H. K. Jee, S. T. Lee & M. K. Kim, 2006. Prediction of nitrogen and phosphorus transport in surface runoff from agricultural watersheds. KSCE Journal of Civil Engineering 10: 53–58.

    Article  CAS  Google Scholar 

  • Laine, A., K. Heikkinen & T. Sutela, 2001. Incubation success of brown trout (Salmo trutta) eggs in boreal humic rivers affected by peatland drainage. Archiv für Hydrobiologie 150: 289–305.

    CAS  Google Scholar 

  • Magee, J. A., M. Obedzinski, S. D. McCormick & J. F. Kocik, 2003. Effects of episodic acidification on Atlantic salmon (Salmo salar) smolts. Canadian Journal of Fisheries and Aquatic Sciences 60: 214–221.

    Article  Google Scholar 

  • McCormick, S. D., A. Keyes, K. H. Nislow & M. Y. Monette, 2009. Impacts of episodic acidification on in-stream survival and physiological impairment of Atlantic salmon (Salmo salar) smolts. Canadian Journal of Fisheries and Aquatic Sciences 66: 394–403.

    Article  Google Scholar 

  • McCune, B. & M. J. Mefford, 1999. PC-ORD. Multivariate Analysis of Ecological Data, Version 4. MjM Software Design, Gleneden Beach, Oregon.

    Google Scholar 

  • Metropolis, N. & S. Ulam, 1949. The Monte Carlo method. Journal of the American Statistical Association 44: 335–341.

    Article  CAS  PubMed  Google Scholar 

  • Milbrink, G. & N. Johansson, 1975. Some effects of acidification on roe of roach, Rutilus rutilus L., and perch, Perca fluviatilis L. with special reference to the Åvaå lake system in eastern Sweden. Report of the Institute of Freshwater Research, Drottningholm 54: 52–62.

  • Muniz, I. P. & H. Leivestad, 1980. Acidification – effects on freshwater fish. In Drablos, D. & A. Dollan (eds), Ecological Impact of Acid Precipitation. Proceedings of an International Conference. Sandefjord, Norway: 84–92.

    Google Scholar 

  • Myllynen, K., E. Ojutkangas & M. Nikinmaa, 1997. River water with high iron concentration and low pH causes mortality of lamprey roe and newly hatched larvae. Ecotoxicology and Environmental Safety 36: 43–48.

    Article  CAS  PubMed  Google Scholar 

  • Nijboer, R. C. & P. F. M. Verdonschot, 2004. Variable selection for modelling effects of eutrophication on stream and river ecosystems. Ecological Modelling 177: 17–39.

    Article  CAS  Google Scholar 

  • Olden, J. D. & D. A. Jackson, 2002. Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling 154: 135–150.

    Article  Google Scholar 

  • Olin, M., M. Rask, J. Ruuhijärvi, M. Kurkilahti, P. Ala-Opas & O. Ylönen, 2002. Fish community structure in mesotrophic and eutrophic lakes of southern Finland: the relative abundances of percids and cyprinids along a trophic gradient. Journal of Fish Biology 60: 593–612.

    Article  Google Scholar 

  • Österholm, P. & M. Åström, 2002. Spatial trends and losses of major and trace metals in agricultural acid sulphate soils distributed in the artificially drained Rintala area, W. Finland. Applied Geochemistry 17: 1209–1218.

    Article  Google Scholar 

  • Palko, J., 1994. Acid sulphate soils and their agricultural and environmental problems in Finland. Ph.D. thesis. Acta Universitatis Ouluensis C 75.

  • Pont, D., B. Hugueny, U. Beier, D. Goffaux, A. Melcher, R. Noble, C. Rogers, N. Roset & S. Schmutz, 2006. Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages. Journal of Applied Ecolology 43: 70–80.

    Article  Google Scholar 

  • Rask, M. & P. Tuunainen, 1990. Acid-induced changes in fish populations of small Finnish lakes. In Kauppi, A., P. Anttila & K. Kenttämies (eds), Acidification in Finland. Springer, Berlin/Heidelberg: 911–927.

    Google Scholar 

  • Rubin, J.-F. & C. Glimsäter, 1996. Egg-to-fry survival of the sea trout in some streams of Gotland. Journal of Fish Biology 48: 585–606.

    Article  Google Scholar 

  • Specht, D. F., 1991. General regression neural network. IEEE Transactions on Neural Networks 2: 568–576.

    Article  CAS  PubMed  Google Scholar 

  • Suryanarayana, I., A. Braibanti, R. S. Rao, V. A. Ramam, D. Sudarsan & G. N. Rao, 2008. Neural networks in fisheries research. Fisheries Research 92: 115–139.

    Article  Google Scholar 

  • Thomann, R. V. & J. A. Mueller, 1987. Principles of Surface Water Quality Modelling and Control. Harper and Row, New York.

    Google Scholar 

  • Urho, L., M. Hilden & R. Hudd, 1990. Fish reproduction and the impact of acidification in the Kyrönjoki River estuary in the Baltic Sea. Environmental Biology of Fishes 27: 273–283.

    Article  Google Scholar 

  • Uusi-Kämppä, J. & T. Yläranta, 1996. Effect of buffer strips on controlling soil erosion and nutrient losses in southern Finland. In Mulamoottil, G., B. G. Warner & E. A. McBean (eds), Wetlands: Environmental Gradients, Boundaries, and Buffers. Proceedings of an International Symposium held April 22–23 1994 at the Sheraton Fallsview, Niagara Falls, Ontario, Canada: 219–233.

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Vehanen, T., T. Sutela & H. Korhonen, in press. Environmental assessment of rivers using fish data – a contribution to Water Framework Directive. Fisheries Management and Ecology.

  • Vuorinen, P. J., M. Keinänen, S. Peuranen & C. Tigerstedt, 1998. Effects of iron, aluminium, dissolved humic material and acidity on grayling (Thymallus thymallus) in laboratory exposures, and a comparison of sensitivity with brown trout (Salmo tutta). Boreal Environment Research 3: 405–419.

    CAS  Google Scholar 

  • Wood, C. M., 1989. The physiological problems of fish in acid waters. In Morris, R., E. W. Taylor & D. J. A. Brown (eds), Acid Toxicity and Aquatic Animals. Cambridge University Press, Cambridge: 125–152.

    Google Scholar 

  • Wood, P. J. & P. D. Armitage, 1997. Biological effects of fine sediment in the lotic environment. Environmental Management 21: 203–217.

    Article  PubMed  Google Scholar 

  • Yli-Halla, M., M. Puustinen & J. Koskiaho, 1999. Area of cultivated acid sulphate soils in Finland. Soil Use and Management 15: 62–67.

    Article  Google Scholar 

  • Yrjänä, T., 2003. Restoration of Riverine Habitat for Fishes – Analyses of Changes in Physical Habitat Conditions. Ph.D. thesis. Acta Universitatis Ouluensis C 188.

Download references

Acknowledgements

Valuable comments given by Heikki Mykrä greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapio Sutela.

Additional information

Handling editor: P. Nõges

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutela, T., Vehanen, T. & Jounela, P. Response of fish assemblages to water quality in boreal rivers. Hydrobiologia 641, 1–10 (2010). https://doi.org/10.1007/s10750-009-0048-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-0048-7

Keywords

Navigation