Skip to main content

Advertisement

Log in

A character-based analysis of the evolution of jellyfish blooms: adaptation and exaptation

  • JELLYFISH BLOOMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Mass occurrence—aggregation, blooming, or swarming—is a remarkable feature of a subset of usually diverse scyphozoan clades, suggesting it is evolutionarily beneficial. If so, it should be associated with one or more phenotypic characteristics that are advantageous and which facilitate occurrence en masse. Here, we examine the evolution of morphological, ecological, and life history characteristics of medusozoans, focusing on the taxa that occur en masse. By tracing the evolution of aggregating, blooming, and swarming phenotypes, organismal traits, and environmental settings on an up-to-date synoptic phylogeny of classes and orders of Medusozoa, we are able to hypothesize circumstances that enable taxa to occur en masse. These include character states and character complexes related to podocyst formation, strobilation, oral arms, large size, and shallow-water habitat. These evolutionarily advantageous traits may be adaptations that evolved in response to selection for individual traits such as survival during periods of few resources, feeding on pulsed resources, and fecundity. These adaptations were apparently subsequently coopted by selection for reproductive success which favored mass occurrence. By considering the distribution of traits describing other phylogenetic lineages—when appropriately detailed ecological and systematic descriptions become available—it may be possible to predict which species are evolutionarily predisposed to form problematic blooms if environmental conditions permit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figure 3
Fig. 4

Similar content being viewed by others

References

  • Albert, D. J., 2005. Reproduction and longevity of Aurelia labiata in Roscoe Bay, a small bay on the Pacific coast of Canada. Journal of the Marine Biological Association of the United Kingdom 85: 575–581.

    Google Scholar 

  • Albert, D. J., 2007. Aurelia labiata medusae (Scyphozoa) in Roscoe Bay avoid tidal dispersion by vertical migration. Journal of Sea Research 57: 281–287.

    Google Scholar 

  • Albert, D. J., 2008. Adaptive behaviours of the jellyfish Aurelia labiata in Roscoe Bay on the west coast of Canada. Journal of Sea Research 59: 198–201.

    Google Scholar 

  • Aleyev, Yu. G., 1977. Nekton. Dr. W. Junk, The Hague, vi + 435p

  • Alldredge, A. L., 1984. The quantitative significance of gelatinous zooplankton as pelagic consumers. In Fasham, M. J. R. (ed.), Flows of Energy and Materials in Marine Ecosystems: Theory and Practice. Plenum, New York: 407–433.

    Google Scholar 

  • Arai, M. N., 1992. Active and passive factors affecting aggregations of hydromedusae: a review. Scientia Marina 56: 99–108.

    Google Scholar 

  • Arai, M. N., 1997. A Functional Biology of Scyphozoa. Chapman and Hall, London.

    Google Scholar 

  • Arai, M. N., 2001. Pelagic coelenterates and eutrophication: a review. Hydrobiologia 451 (Developments in Hydrobiology) 155: 69–87.

    Google Scholar 

  • Arai, M. N. & I. M. Chan, 1989. Two types of excretory pores in the hydrozoan medusa Aequorea victoria (Murbach and Shearer, 1902). Journal of Plankton Research 11: 609–614.

    Google Scholar 

  • Armbruster, W. S., 1992. Phylogeny and the evolution of plant-animal interactions. BioScience 42: 12–20.

    Google Scholar 

  • Bailey, K. M. & R. S. Batty, 1983. Laboratory study of predation by Aurelia aurita on larvae of cod, flounder, plaice and herring: development and vulnerability to capture. Marine Biology 83: 287–291.

    Google Scholar 

  • Baker, A. C., 2003. Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annual Reviews in Ecology Evolution and Systematics 34: 661–689.

    Google Scholar 

  • Behmer, S. P. & A. Joern, 2008. Coexisting generalist herbivores occupy unique nutritional feeding niches. Proceedings of the National Academy of Sciences of the USA 105: 1977–1982.

    PubMed  CAS  Google Scholar 

  • Bolton, T. F. & W. M. Graham, 2004. Morphological variation among populations of an invasive jellyfish. Marine Ecology Progress Series 278: 125–139.

    Google Scholar 

  • Bonsall, M. B. & M. P. Hassell, 1997. Apparent competition structures ecological assemblages. Nature 388: 371–373.

    CAS  Google Scholar 

  • Bouillon, J., 1999. Hydromedusae. In Boltovskoy, D. (ed.), South Atlantic Zooplankton. Backhuys, Leiden: 385–465.

    Google Scholar 

  • Brodeur, R. D., H. Sugisaki & G. L. Hunt Jr, 2002. Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Marine Ecology Progress Series 233: 89–103.

    Google Scholar 

  • Brooks, D. R. & D. A. McClennan, 2002. The nature of diversity–an evolutionary voyage of discovery. University of Chicago Press, Chicago.

    Google Scholar 

  • Cartwright, P., S. L. Halgedahl, J. R. Hendricks, R. D. Jarrard, A. C. Marques, A. G. Collins & B. S. Lieberman, 2007. Exceptionally preserved jellyfishes from the Middle Cambrian. PLoS ONE 2(10): e1121.

    PubMed  Google Scholar 

  • Chapman, G., 1966. The structure and function of the mesoglea. In Rees, W. J. (ed.), The Cnidaria and their Evolution. Academic Press, London: 147–168.

    Google Scholar 

  • Colin, S. P. & J. H. Costello, 2002. Morphology, swimming performance and propulsive mode of six co-occurring hydromedusae. The Journal of Experimental Biology 205: 427–437.

    PubMed  Google Scholar 

  • Colin, S. P., J. H. Costello & H. Kordula, 2006. Upstream foraging by medusae. Marine Ecology Progress Series 327: 143–155.

    Google Scholar 

  • Collins, A. G., 2002. Phylogeny of Medusozoa and the evolution of cnidarian life cycles. Journal of Evolutionary Biology 15: 418–432.

    Google Scholar 

  • Collins, A. G. P., Marques A. C. Schuchert, T. Jankowski, M. Medina & B. Schierwater, 2006. Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Systematic Biology 55: 97–115.

    PubMed  Google Scholar 

  • Costello, J. H. & S. P. Colin, 1995. Flow and feeding by swimming scyphomedusae. Marine Biology 124: 399–406.

    Google Scholar 

  • Cuddington, K. M. & P. Yodzis, 1999. Black noise and population persistence. Proceedings of the Royal Society of London B 266: 969–973.

    Google Scholar 

  • Cushing, D. H., 1975. The natural mortality of the plaice. Journal du Conseil International pour l’Exploration de la Mer 36: 150–157.

    Google Scholar 

  • Cushing, D. H., 1983. Are fish larvae too dilute to affect the density of their food organisms? Journal of Plankton Research 5: 847–854.

    Google Scholar 

  • Cushing, D. H., 1984. The gadoid outburst in the North Sea. Journal du Conseil International pour l’Exploration de la Mer 41: 159–166.

    Google Scholar 

  • Dabiri, J. O., S. P. Colin & J. H. Costello, 2007. Morphological diversity of medusan lineages constrained by animal-fluid interactions. The Journal of Experimental Biology 210: 1868–1873.

    PubMed  Google Scholar 

  • D’Ambra, I., J. H. Costello & F. Bentivegna, 2001. Flow and prey capture by the scyphomedusa Phyllorhiza punctata von Lendenfeld, 1884. Hydrobiologia 451: 223–227.

    Google Scholar 

  • Darwin, C. R., 1874. The descent of man, and selection in relation to sex, 2nd ed. Appleton, New York.

    Google Scholar 

  • Daryanabard, R. & M. N. Dawson, 2008. Jellyfish blooms: Crambionella orsini (Scyphozoa, Rhizostomeae) in the Gulf of Oman, Iran, 2002–2003. Journal of the Marine Biological Association of the UK 88: 477–483.

    Google Scholar 

  • Dawson, M. N., 2004. Some implications of molecular phylogenetics for understanding biodiversity in jellyfishes, with emphasis on Scyphozoa. Hydrobiologia 530(531): 249–260.

    Google Scholar 

  • Dawson, M. N. & W. M. Hamner, 2003. Geographic variation and behavioral evolution in marine plankton: the case of Mastigias (Scyphozoa: Rhizostomeae). Marine Biology 143: 1161–1174.

    Google Scholar 

  • Dawson, M. N. & W. M. Hamner, 2008. A biophysical perspective on dispersal and the geography of evolution in marine and terrestrial systems. Journal of the Royal Society Interface 5: 135–150.

    Google Scholar 

  • Dawson, M. N., L. E. Martin & L. K. Penland, 2001. Jellyfish swarms, tourists, and the Christ-child. Hydrobiologia 451 (Developments in Hydrobiology) 155: 131–144.

    Google Scholar 

  • deBeer, G. R. & J. S. Huxley, 1924. Studies in dedifferentiation. V. Dedifferentiation and reduction in Aurelia. Quarterly Journal of Microscopical Science 68: 471–479.

    Google Scholar 

  • Decker, M. B., C. W. Brown, R. R. Hood, J. E. Purcell, T. F. Gross, J. C. Matanoski, R. O. Bannon & E. M. Setzler-Hamilton, 2007. Predicting the distribution of the scyphomedusa Chrysaora quinquecirrha in Chesapeake Bay. Marine Ecology Progress Series 329: 99–113.

    Google Scholar 

  • de Lafontaine, Y. & W. C. Leggett, 1987. Effect of container size on estimates of mortality and predation rates in experiments with macrozooplankton and larval fish. Canadian Journal of Fisheries and Aquatic Sciences 44: 1534–1543.

    Google Scholar 

  • Denton, E. J. & T. I. Shaw, 1962. The buoyancy of gelatinous marine animals. Journal of Physiology 161: 14P–15P.

    Google Scholar 

  • de Queiroz, K., 1996. Including the characters of interest during tree reconstruction and the problem of circularity and bias in studies of character evolution. American Naturalist 148: 700–708.

    Google Scholar 

  • Donoghue, M. J., 2005. Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. Paleobiology 31: 77–93.

    Google Scholar 

  • Doyle, T. K., J. D. R. Houghton, S. M. Buckley, G. C. Hays & J. Davenport, 2007. The broad-scale distribution of five jellyfish species across a temperate coastal environment. Hydrobiologia 579: 29–39.

    Google Scholar 

  • Dreanno, C., K. Matsumura, N. Dohmae, K. Takio, H. Hirota, R. R. Kirby & A. S. Clare, 2006. An alpha(2)-macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite. Proceedings of the National Academy of Sciences of the USA 103: 14396–14401.

    PubMed  CAS  Google Scholar 

  • Dybas, C. L., 2002. Jellyfish ‘blooms’ could be sign of ailing seas. Washington Post 06 May 2002: A09.

  • Fautin, D. G. & R. W. Buddemeier, 2004. Adaptive bleaching: a general phenomenon. Hydrobiologia 530(531): 459–467.

    Google Scholar 

  • García, J. R. & E. Durbin, 1993. Zooplanktivorous predation by large scyphomedusae Phyllorhiza punctata (Cnidaria: Scyphozoa) in Laguna Joyuda. Journal of Experimental Marine Biology and Ecology 173: 71–93.

    Google Scholar 

  • Gershwin, L. & A. G. Collins, 2002. A preliminary phylogeny of Pelagiidae (Cnidaria, Scyphozoa), with new observations of Chrysaora colorata comb. nov. Journal of Natural History 36: 127–148.

    Google Scholar 

  • Gilbert, J. J. & C. E. Williamson, 1983. Sexual dimorphism in zooplankton (Copepoda, Cladocera, and Rotifera). Annual Review of Ecology and Systematics 14: 1–33.

    Google Scholar 

  • Gotelli, N. J., 2001. A primer of ecology, 3rd ed. Sinauer, Sunderland.

    Google Scholar 

  • Goulet, T. L., 2006. Most corals may not change their symbionts. Marine Ecology Progress Series 321: 1–7.

    Google Scholar 

  • Graham, W. M., D. L. Martin, D. L. Felder, V. L. Asper & H. M. Perry, 2003. Ecological and economic implications of a tropical jellyfish invader in the Gulf of Mexico. Biological Invasions 5: 53–69.

    Google Scholar 

  • Graham, W. M., F. Pagès & W. M. Hamner, 2001. A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451 (Developments in Hydrobiology) 155: 199–212.

    Google Scholar 

  • Hamner, W. M & M. N Dawson, 2008. A systematic review of the evolution of jellyfish blooms: advantageous aggregations and adaptive assemblages. Hydrobiologia. doi:10.1007/s10750-008-9620-9.

    Google Scholar 

  • Hamner, W. M., P. P. Hamner & S. W. Strand, 1994. Sun compass migration by Aurelia aurita (Scyphozoa): population persistence versus dispersal in Saanich Inlet, British Columbia. Marine Biology 119: 347–356.

    Google Scholar 

  • Hamner, W. M. & I. R. Hauri, 1981. Long-distance horizontal migrations of zooplankton (Scyphomedusae: Mastigias). Limnology and Oceanography 26: 414–423.

    Article  Google Scholar 

  • Hamner, W. M. & R. M. Jenssen, 1974. Growth, degrowth, and irreversible cell differentiation in Aurelia aurita. American Zoologist 14: 833–849.

    Google Scholar 

  • Hamner, W. M., M. S. Jones & P. P. Hamner, 1995. Swimming, feeding, circulation, and vision in the Australian box jellyfish, Chironex fleckeri (Cnidaria; Cubozoa). Marine and Freshwater Research 46: 985–990.

    Google Scholar 

  • Hanski, I., L. Hansson & H. Henttonen, 1991. Specialist predators, generalist predators, and the microtine rodent cycle. Journal of Animal Ecology 60: 353–367.

    Google Scholar 

  • Hansson, L. J., 1997. Capture and digestion of the scyphozoan jellyfish Aurelia aurita by Cyanea capillata and prey response to predator contact. Journal of Plankton Research 19: 195–208.

    Google Scholar 

  • Hjort, J., 1914. Fluctuations in the great fisheries of Northern Europe viewed in light of biological research. Rapports et Procès-Verbeaux des Réunions du Conseil International pour l’Exploration de la Mer 20: 1–228.

    Google Scholar 

  • Hofmann, D. K. & G. Crow, 2002. Induction of larval metamorphosis in the tropical scyphozoan Mastigias papua: striking similarity with upside down-jellyfish Cassiopea spp. (with notes on related species). Vie et Milieu 52: 141–147.

    Google Scholar 

  • Holland, B. S., M. N. Dawson, G. L. Crow & D. K. Hofmann, 2004. Global phylogeography of Cassiopea (Scyphozoa: Rhizostomae): Molecular evidence for cryptic species and multiple Hawaiian invasions. Marine Biology 145: 1119–1128.

    Google Scholar 

  • Holst, S., I. Sötje, H. Tiemann & G. Jarms, 2007. Life cycle of the rhizostome jellyfish Rhizostoma octopus (L.) (Scyphozoa, Rhizostomeae), with studies on cnidocysts and statoliths. Marine Biology 151: 1695–1710.

    Google Scholar 

  • Huang, M., J. Hu & Y. Wang, 1985. Preliminary study on the breeding habits of edible jellyfish in Hangzhou Wan Bay. Journal of Fisheries of China 9: 239–246. In Chinese; English abstract.

    Google Scholar 

  • Hunt, J. C. & D. J. Lindsay, 1998. Observations on the behavior of Atolla (Scyphozoa: Coronatae) and Nanomia (Hydrozoa: Physonectae): use of the hypertrophied tentacle in prey capture. Plankton Biology and Ecology 45: 239–242.

    Google Scholar 

  • Hyman, L. H., 1940. Observations and experiments on the physiology of medusae. Biological Bulletin (Woods Hole) 79: 282–296.

    Google Scholar 

  • Ives, A. R., Á. Einarsson, V. A. A. Jansen & A. Gardarsson, 2008. High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn. Nature 452: 84–87.

    PubMed  CAS  Google Scholar 

  • Jarms, G., H. Tiemann & U. Båmstedt, 2002. Development and biology of Periphylla periphylla (Scyphozoa: Coronatae) in a Norwegian fjord. Marine Biology 141: 647–657.

    Google Scholar 

  • Kooi, B. W., L. D. J. Kuiper & S. A. L. M. Kooijman, 2004. Consequences of symbiosis for food web dynamics. Journal of Mathematical Biology 49: 227–271.

    PubMed  CAS  Google Scholar 

  • Kramp, P. L., 1961. Synopsis of the medusae of the world. Journal of the Marine Biological Association of the United Kingdom 40: 1–469.

    Google Scholar 

  • Larson, R. J., 1979. Feeding in coronate medusa (Class Scyphozoa, Order Coronatae). Marine Behaviour and Physiology 6: 123–129.

    Google Scholar 

  • Larson, R. J., 1986. Pelagic scyphomedusae (Scyphozoa: Coronatae and Semaeostomeae) of the Southern Ocean. Biology of the Antarctic Seas. Antarctic Research Series 41: 59–165.

    Google Scholar 

  • Larson, R. J., 1992. Riding Langmuir circulations and swimming in circles: a novel form of clustering behavior by the scyphomedusa Linuche unguiculata. Marine Biology 112: 229–235.

    Google Scholar 

  • Lawton, J., 1988. More time means more variation. Nature 334: 563.

    Google Scholar 

  • Lucas, C. H., 2001. Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451: 229–246.

    Google Scholar 

  • Lucas, C. H. & S. Lawes, 1998. Sexual reproduction of the scyphomedusa Aurelia aurita in relation to temperature and variable food supply. Marine Biology 131: 629–638.

    Google Scholar 

  • Luckow, M. & A. Bruneau, 1997. Circularity and independence in phylogenetic tests of ecological hypotheses. Cladistics 13: 145–151.

    Google Scholar 

  • Maddison, W. P. & D. R. Maddison, 1989. Interactive analysis of phylogeny and character evolution using the computer program MacClade. Folia Primatologica (Basel) 53: 190–202.

    CAS  Google Scholar 

  • Marques, A. C. & A. G. Collins, 2004. Cladistic analysis of Medusozoa and cnidarian evolution. Invertebrate Biology 123: 23–42.

    Google Scholar 

  • Martin, L. E., 1999. The Population Biology and Ecology of Aurelia sp. (Scyphozoa: Semaeostomeae) in a Tropical Meromictic Marine lake in Palau, Micronesia. Ph.D. thesis, University of California, Los Angeles: 250 pp.

  • Mayer, A. G., 1910. Medusae of the World, III: the Scyphomedusae. Carnegie Institute, Washington.

    Google Scholar 

  • Mills, C. E., 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451 (Developments in Hydrobiology) 155: 55–68.

    Google Scholar 

  • Morris, A. K., 2006, Zooplankton Aggregations in California Coastal Zones, Ph.D. thesis, University of California, Los Angeles: 309 pp.

  • Omori, M. & E. Nakano, 2001. Jellyfish fisheries in southeast Asia. Hydrobiologia 451 (Developments in Hydrobiology) 155: 19–26.

    Google Scholar 

  • Ottersen, G. & H. Loeng, 2000. Covariability in early growth and year-class strength of Barents Sea cod, haddock, and herring: the environmental link. ICES Journal of Marine Science 57: 339–348.

    Google Scholar 

  • Peach, M. B. & K. A. Pitt, 2005. Morphology of the nematocysts of the medusae of two scyphozoans, Catostylus mosaicus and Phyllorhiza punctata (Rhizostomae): implications for capture of prey. Invertebrate Biology 124: 98–108.

    Google Scholar 

  • Pennak, R. W., 1956. The fresh-water jellyfish Craspedacusta in Colorado with some remarks on its ecology and morphological degenerataion. Transactions of the American Microscopical Society 75: 324–331.

    Google Scholar 

  • Pitt, K. A. & M. J. Kingsford, 2000. Reproductive biology of the edible jellyfish Catostylus mosaicus (Rhizostomeae). Marine Biology 137: 791–799.

    Google Scholar 

  • Purcell, J. E., 1989. Predation on fish larvae and eggs by the hydromedusa Aequorea victorea at a herring spawning ground in British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 46: 1415–1427.

    Article  Google Scholar 

  • Purcell, J. E., 2005. Climate effects on formation of jellyfish and ctenophore blooms. Journal of the Marine Biological Association of the United Kingdom 85: 461–476.

    Google Scholar 

  • Purcell, J. E., U. Bamstedt & A. Bamstedt, 1999. Prey, feeding rates, and asexual reproduction rates of the introduced oligohaline hydrozoan Moerisia lyonsi. Marine Biology 134: 317–325.

    Google Scholar 

  • Purcell, J. E., S. Uye & W.-T. Lo, 2007. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Marine Ecology Progress Series 350: 153–174.

    Google Scholar 

  • Rakow, K. C. & W. M. Graham, 2006. Orientation and swimming mechanics by the scyphomedusa Aurelia sp. in shear flow. Limnology and Oceanography 51: 1097–1106.

    Article  Google Scholar 

  • Ricklefs, R. E. & G. L. Miller, 1999. Ecology, 4th ed. W. H. Freeman, New York.

    Google Scholar 

  • Ronquist, F., 2004. Bayesian inference of character evolution. Trends in Ecology and Evolution 19: 475–481.

    PubMed  Google Scholar 

  • Rottini Sandrini, L. & M. Avian, 1983. Biological cycle of Pelagia noctiluca: morphological aspects of the development from planula to ephyra. Marine Biology 74: 169–174.

    Google Scholar 

  • Ruppert, E. E. & K. J. Carle, 1983. Morphology of metazoan circulatory systems. Zoomorphology 103: 193–208.

    Google Scholar 

  • Russell, F. S., 1970. The Medusae of the British Isles. II Pelagic Scyphozoa with a Supplement to the First Volume on Hydromedusae, Cambridge University Press, Cambridge.

    Google Scholar 

  • Schneider, G., 1988. Larvae production of the common jelly-fish Aurelia aurita in the Western Baltic 1982–1984. Kieler Meeresforschungen 6: 295–300.

    Google Scholar 

  • Seipel, K. & V. Schmid, 2006. Mesodermal anatomies in cnidarian polyps and medusae. International Journal of Developmental Biology 50: 589–599.

    PubMed  Google Scholar 

  • Shanks, A. L. & W. M. Graham, 1987. Orientated swimming in the jellyfish Stomolophus meleagris L. Agassiz (Scyphozoan: Rhizostomida). Journal of Experimental Marine Biology and Ecology 108: 159–169.

    Google Scholar 

  • Shine, R., 1988. The evolution of large body size in females: a critique of Darwin’s “fecundity advantage” model. The American Naturalist 131: 124–131.

    Google Scholar 

  • Shine, R., 1989. Ecological causes for the evolution of sexual dimorphism: a review of the evidence. The Quarterly Review of Biology 64: 419–461.

    PubMed  CAS  Google Scholar 

  • Sinclair, M., 1988. Marine Populations. Washington Sea Grant Program, Seattle.

    Google Scholar 

  • Stenseth, N. C., A. Mysterud, G. Ottersen, J. W. Hurrell, K.-S. Chan & M. Lima, 2002. Ecological effects of climate fluctuations. Science 297: 1292–1296.

    PubMed  CAS  Google Scholar 

  • Stiasny, G., 1921. Studien über rhizostomeen. In van Oort, E. D. (ed.), Capita Zoologica. Martinus Njhoff, Gravenhage.

    Google Scholar 

  • Stiasny, G. & H. van der Maaden, 1943. Über scyphomedusen aus dem Ochotskishen und Kamtschatka Meer nebst einer kritik der Genera Cyanea und Desmonema. Zoologische Jahrbücher Abteilung für Systematik 76: 227–266.

    Google Scholar 

  • Straehler-Pohl, I. & G. Jarms, 2005. Life cycle of Carybdea marsupialis Linnaeus, 1758 (Cubozoa, Carybdeidae) reveals metamorphosis to be a modified strobilation. Marine Biology 147: 1271–1277.

    Google Scholar 

  • Strand, S. W. & W. M. Hamner, 1988. Predatory behavior of Phacellophora camtschatica and size-selective predation upon Aurelia aurita (Scyphozoa: Cnidaria) in Saanich Inlet, British Columbia. Marine Biology 99: 409–414.

    Google Scholar 

  • Sugiura, Y., 1964. On the life-history of rhizostome medusae. II. Indispensability of zooxanthellae for strobilation in Mastigias papua. Embryologia 8: 223–233.

    Google Scholar 

  • Tamburri, M. N., R. K. Zimmer & C. A. Zimmer, 2007. Mechanisms reconciling gregarious larval settlement with adult cannibalism. Ecological Monographs 77: 255–268.

    Google Scholar 

  • Tanner, J. E., 2002. Consequences of density-dependent heterotrophic feeding for a partial autotroph. Marine Ecology Progress Series 227: 293–304.

    Google Scholar 

  • Thompson, J. N., S. L. Nuismer & R. Gomulkiewicz, 2002. Coevolution and maladaptation. Integrative and Comparative Biology 42: 381–387.

    Google Scholar 

  • Thuesen, E. V., L. D. Rutherford Jr., P. L. Brommer, K. Garrison, M. A. Gutowska & T. Towanda, 2005. Intragel oxygen promotes hypoxia tolerance of scyphomedusae. Journal of Experimental Biology 208: 2475–2482.

    PubMed  Google Scholar 

  • Toonen, R. J. & J. R. Pawlik, 2001. Foundations of gregariousness: a dispersal polymorphism among the planktonic larvae of a marine invertebrate. Evolution 55: 2439–2454.

    PubMed  CAS  Google Scholar 

  • van Iten, H., J. Moraes Leme, M. G. Simões, A. C. Marques & A. G. Collins, 2006. Reassessment of the phylogenetic position of conulariids (?Ediacaran–Triassic) within the subphylum Medusozoa (phylum Cnidaria). Journal of Systematic Palaeontology 4: 109–118.

    Google Scholar 

  • Veliz, D., P. Duchesne, E. Bourget & L. Bernatchez, 2006. Genetic evidence for kin aggregation in the intertidal acorn barnacle (Semibalanus balanoides). Molecular Ecology 15: 4193–4202.

    PubMed  CAS  Google Scholar 

  • Watanabe, T. & H. Ishii, 2001. In situ estimation of ephyrae liberated from polyps of Aurelia aurita using settling plates in Tokyo Bay, Japan. Hydrobiologia 451 (Developments in Hydrobiology) 155: 247–258.

    Google Scholar 

  • Werner, B., 1973. New investigations on systematics and evolution of the class Scyphozoa and the phylum Cnidaria. Publications of the Seto Marine Biological Laboratory 20: 35–61.

    Google Scholar 

  • Zrzavy, J., 1997. Phylogenetics and ecology: all characters should be included in the cladistic analysis. Oikos 80: 186–192.

    Google Scholar 

Download references

Acknowledgments

Detailed critiques by M. Arai, P. Hamner, L. Martin, K. Pitt, J. Purcell, H. Swift, and two anonymous reviewers, and discussion with K. Bayha, L. Gomez Daglio, J. Lehman, and J. Vo helped improve and organize the content and presentation of this manuscript. WMH thanks the organizers of the 2nd International Jellyfish Blooms Symposium, K. Pitt and J. Seymour, for the invitation to present a plenary address at the meeting, and we thank the Editors for their patience and industry in preparing this volume. Allen G. Collins kindly provided the datamatrix for analyses in Fig. 2. This work was supported in part by grant DEB-0717078 from the US National Science Foundation to MND and AGC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael N Dawson.

Additional information

Guest editors: K. A. Pitt & J. E. Purcell

Jellyfish Blooms: Causes, Consequences, and Recent Advances

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawson, M.N., Hamner, W.M. A character-based analysis of the evolution of jellyfish blooms: adaptation and exaptation. Hydrobiologia 616, 193–215 (2009). https://doi.org/10.1007/s10750-008-9591-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9591-x

Keywords

Navigation