Skip to main content
Log in

Mitigating the effects of high-head dams on the Columbia River, USA: experience from the trenches

  • EIFAC 2006: DAMS, WEIRS AND FISH
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Worldwide, humans have tremendously altered freshwater ecosystems and arguably, construction of dams has had the greatest effect. Maintaining natural ecological processes and developing mitigation strategies that will maintain species while retaining dam benefits is challenging. In the Columbia River, USA, over the last 30 years more than US$7 billion has been spent on efforts to save historically large runs of salmon. These efforts have included improving passage conditions at dams through construction of efficient fish ladders for adult salmon, effective fish passage facilities for downstream migrating juvenile salmon, voluntarily spilling water to decrease the number of downstream migrants that pass through turbines, modifying dam operations to provide more constant flow and providing additional flow from storage reservoirs to create more natural flow through areas inundated by dams. Construction of hatcheries to offset losses in habitat for wild fish has also occurred. Further, for salmon from the Snake River, the largest tributary to the Columbia River, a large percent of juvenile salmon smolts are collected at upstream dams and transported in barges to the lower river to avoid passage through dams, turbines, and reservoirs. Experiences in the Columbia River suggest that the sum of all of these actions may keep salmon stocks from going extinct, but the technological fixes will not likely provide complete mitigation for altered freshwater ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Babbitt, B., 2002. What goes up, may come down. BioScience 52: 656–658.

    Article  Google Scholar 

  • Backman, T. W. H., A. F. Evans & M. S. Robertson, 2002. Gas bubble trauma incidence in juvenile salmonids in the lower Columbia and Snake Rivers. North American Journal of Fisheries Management 22: 965–972.

    Article  Google Scholar 

  • Bednarek, A. T. & D. D. Hart, 2005. Modifying dam operations to restore rivers: ecological responses to Tennessee River dam mitigation. Ecological Applications 15: 997–1008.

    Article  Google Scholar 

  • Berejikian, B. A. & M. J. Ford, 2004. Review of relative fitness of hatchery and natural salmon. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-61, 28 p. Available online at http://www.nwfsc.noaa.gov/publications.

  • Budy, P., G. P. Thiede, N. Bouwes, C. E. Petrosky & H. Schaller, 2002. Evidence linking delayed mortality of Snake River salmon to their earlier hydrosystem experience. North American Journal of Fisheries Management 22: 35–51.

    Article  Google Scholar 

  • Burnham, K. P., D. R. Anderson, G. C. White, C. Brownie & K. H. Pollock, 1987. Design and analysis methods for fish survival experiments based on release-recapture. American Fisheries Society Monograph 5, Bethesda, MD.

  • Collins, G. B. & C. H. Elling, 1960. Fishway Research at the Fisheries Engineering Research Laboratory. U.S. Department of the Interior, Fish and Wildlife Service, Bureau of Commercial Fisheries, Circular 98, Washington, D.C.

  • Congleton, J. L., W. J. LaVoie, C. B. Schreck & L. E. Davis, 2000. Stress indices in migrating juvenile Chinook salmon and steelhead of wild and hatchery origin before and after barge transportation. Transactions of the American Fisheries Society 129: 946–961.

    Article  Google Scholar 

  • Craig, J. A. & R. L. Hacker, 1940. The history and development of the fisheries of the Columbia River. Bulletin of the U.S. Bureau of Fisheries 49: 133–216.

    Google Scholar 

  • Doyle, M. W., J. M. Harbor & E. H. Stanley, 2003. Toward policies and decision-making for dam removal. Environmental Management 31: 453–465.

    Article  PubMed  Google Scholar 

  • Ebel, W. J., 1980. Transportation of Chinook salmon, Oncorhynchus tshawytscha, and steelhead, Salmo gairdneri, smolts in the Columbia River and effects on adult returns. Fishery Bulletin 78: 491–505.

    Google Scholar 

  • Ebel, W. J., D. L. Park & R. C. Johnsen, 1973. Effects of transportation on survival and homing of Snake River Chinook salmon and steelhead trout. Fishery Bulletin 71: 549–563.

    Google Scholar 

  • Ebel, W. J. & H. L. Raymond, 1976. Effect of atmospheric gas supersaturation on salmon and steelhead trout of the Snake and Columbia Rivers. Marine Fisheries Review 38: 1–14.

    Google Scholar 

  • Foley, J. A., R. DeFries, G. P. Asner, C. Barford, G. Bonan, S. R. Carpenter, F. S. Chapin, M. T. Coe, G. C. Daily, H. K. Gibbs, J. H. Helkowski, T. Holloway, E. A. Howard, C. J. Kucharik, C. Monfreda, J. A. Patz, I. C. Prentice, N. Ramankutty & P. K. Snyder, 2005. Global consequences of land use. Science 309: 570–574.

    Article  PubMed  CAS  Google Scholar 

  • Gessel, M. H., J. G. Williams, D. A. Brege, R. F. Krcma & D. R. Chambers, 1991. Juvenile salmonid guidance at Bonneville Second Powerhouse, 1983–89. North American Journal of Fisheries Management 11: 400–412.

    Article  Google Scholar 

  • Goodwin, R. A., J. M. Nestler, J. J. Anderson, L. J. Weber & D. P. Loucks, 2006. Forecasting 3-D fish movement behavior using a Eulerian–Lagrangian-agent method (ELAM). Ecological Modelling 192: 197–223.

    Article  Google Scholar 

  • Hare, S. R., N. J. Mantua & R. C. Francis, 1999. Inverse production regimes: Alaska and West Coast Pacific salmon. Fisheries 24: 6–14.

    Article  Google Scholar 

  • Jackson, R. B., S. R. Carpenter, C. N. Dahm, D. M. McKnight, R. J. Naiman, S. L. Postel & S. W. Running, 2001. Water in a changing world. Ecological Applications 11: 1027–1045.

    Article  Google Scholar 

  • Johnson, G. E., S. M. Anglea, N. S. Adams & T. O. Wik, 2005. Evaluation of a prototype surface flow bypass for juvenile salmon and steelhead at the powerhouse of Lower Granite Dam, Snake River, Washington, 1996–2000. North American Journal of Fisheries Management 25: 138–151.

    Article  Google Scholar 

  • Kareiva, P., M. Marvier & M. McClure, 2000. Recovery and management options for spring/summer chinook salmon in the Columbia River Basin. Science 290: 977–979.

    Article  PubMed  CAS  Google Scholar 

  • Krcma, R. F. & R. F. Raleigh, 1970. Migration of juvenile salmon and trout into Brownlee Reservoir, 1962–65. Fishery Bulletin 68: 203–217.

    Google Scholar 

  • Ledgerwood, R. D., B. A. Ryan, E. M. Dawley, E. P. Nunnallee & J. W. Ferguson, 2004. A Surface trawl to detect migrating juvenile salmonids tagged with passive integrated transponder tags. North American Journal of Fisheries Management 24: 440–451.

    Article  Google Scholar 

  • Levin, P. S. & J. G. Williams, 2002. Interspecific effects of artificially propagated fish: an additional conservation risk for salmon. Conservation Biology 16: 1581–1587.

    Article  Google Scholar 

  • Levin, P. S., R. W. Zabel & J. G. Williams, 2001. The road to extinction is paved with good intentions: negative association of fish hatcheries with threatened salmon. Proceedings of the Royal Society of London Series B-Biological Sciences 268: 1153–1158.

    Article  CAS  Google Scholar 

  • Mantua, N. J. & S. R. Hare, 2002. The Pacific decadal oscillation. Journal of Oceanography 58: 35–44.

    Article  Google Scholar 

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace & R. C. Francis, 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society 78: 1069–1079.

    Article  Google Scholar 

  • Marsh, D. M., G. M. Matthews, S. Achord, T. E. Ruehle & B. P. Sandford, 1999. Diversion of salmonid smolts tagged with passive integrated transponders from an untagged population passing through a juvenile collection system. North American Journal of Fisheries Management 19: 1142–1146.

    Article  Google Scholar 

  • Mesa, M. G., A. G. Maule & C. B. Schreck, 2000. Interaction of infection with Renibacterium salmoninarum and physical stress in juvenile chinook salmon: physiological responses, disease progression, and mortality. Transactions of the American Fisheries Society 129: 158–173.

    Article  Google Scholar 

  • Mighell, J. M., 1969. Rapid cold branding of salmon and trout with liquid nitrogen. Journal of the Fisheries Research Board of Canada 26: 2765–2769.

    Google Scholar 

  • Monk, B. H., D. Weaver, C. S. Thompson & F. J. Ossiander, 1989. Effects of flow and weir design on the passage behavior of American shad and salmonids in an experimental fish ladder. North American Journal of Fisheries Management 9: 60–67.

    Article  Google Scholar 

  • Moser, M. L., P. A. Ocker, L. C. Stuehrenberg & T. C. Bjornn, 2002. Passage efficiency of adult pacific lampreys at hydropower dams on the lower Columbia River, USA. Transactions of the American Fisheries Society 131: 956–965.

    Article  Google Scholar 

  • Muir, W. D., D. M. Marsh, B. P. Sandford, S. G. Smith & J. G. Williams, 2006. Post-hydropower system delayed mortality of transported Snake River stream-type Chinook salmon: Unraveling the mystery. Transactions of the American Fisheries Society 135: 1523–1534.

    Article  Google Scholar 

  • National Research Council, 1996. Upstream: Salmon and Society in the Pacific Northwest. National Academy Press, Washington, D.C.

    Google Scholar 

  • Netboy, A., 1974. The Salmon: Their Fight for Survival. Houghton Mifflin Co., Boston.

    Google Scholar 

  • Nilsson, C., C. A. Reidy, M. Dynesius & C. Revenga, 2005. Fragmentation and flow regulation of the world’s large river systems. Nature 308: 405–408.

    CAS  Google Scholar 

  • Northwest Power and Conservation Council, 2003. Columbia River Basin Fish and Wildlife Program. Available at http://www.nwcouncil.org/library/2003/2003-20/default.htm.

  • Patten, D. T., D. A. Harpman, M. I. Voita & T. J. Randle, 2001. A managed flood on the Colorado River: Background, objectives, design, and implementation. Ecological Applications 11: 635–643.

    Article  Google Scholar 

  • Petersen, J. H. & C. P. Paukert, 2005. Development of a bioenergetics model for humpback chub and evaluation of water temperature changes in the Grand Canyon, Colorado River. Transactions of the American Fisheries Society 134: 960–974.

    Article  Google Scholar 

  • Postel, S. L., G. C. Daily & P. R. Ehrlich, 1996. Human appropriation of renewable fresh water. Science 271: 785–788.

    Article  CAS  Google Scholar 

  • Prentice, E. F., T. A. Flagg & C. S. McCutcheon, 1990b. Feasibility of using implantable passive integrated transponder (PIT) tags in salmonids. American Fisheries Society Symposium 7: 317–322.

    Google Scholar 

  • Prentice, E., T. Flagg, C. S. McCutcheon & D. F. Brastow, 1990a. PIT-tag monitoring systems for hydroelectric dams and fish hatcheries. American Fisheries Society Symposium 7: 323–334.

    Google Scholar 

  • Raymond, H. L., 1979. Effects of dams and impoundments on migrations of juvenile chinook salmon and steelhead from the Snake River. 1966 to 1975. Transactions of the American Fisheries Society 108: 505–529.

    Article  Google Scholar 

  • Raymond, H. L., 1988. Effects of hydroelectric development and fisheries enhancement on spring and summer Chinook salmon and steelhead in the Columbia River Basin. North American Journal of Fisheries Management 8: 1–24.

    Article  Google Scholar 

  • Scheuerell, M. D. & J. G. Williams, 2005. Forecasting climate-induced changes in the survival of Snake River spring/summer Chinook salmon. Fisheries Oceanography 14: 448–457.

    Article  Google Scholar 

  • Schreck, C. B., T. P. Stahl, L. E. Davis, D. D. Roby & B. J. Clemens, 2006. Mortality estimates of juvenile spring–summer Chinook salmon in the lower Columbia River and estuary, 1992–1998: evidence for delayed mortality? Transactions of the American Fisheries Society 135: 457–475.

    Article  Google Scholar 

  • Sims, C. W., 1970. Emigration of juvenile salmon and trout from Brownlee Reservoir. Fishery Bulletin 68: 69–83.

    Google Scholar 

  • Skalski, J. R., 1998. Estimating season-wide survival rates of outmigrating salmon smolt in the Snake River, Washington. Canadian Journal of Fisheries and Aquatic Sciences 55: 761–769.

    Article  Google Scholar 

  • Skalski, J. R., R. Townsend, J. Lady, A. E. Giorgi, J. R. Stevenson & R. D. McDonald, 2002. Estimating route-specific passage and survival probabilities at a hydroelectric project from smolt radiotelemetry studies. Canadian Journal of Fisheries and Aquatic Sciences 59: 1385–1393.

    Article  Google Scholar 

  • Stanley, E. H. & M. W. Doyle, 2003. Trading off: the ecological removal effects of dam. Frontiers in Ecology and the Environment 1: 15–22.

    Article  Google Scholar 

  • Waples, R. S., 1991. Definition of “species” under the Endangered Species Act: Application to Pacific salmon. NOAA Technical Memorandum NMFS F/NWC-194, 29 p. Available online at http://www.nwfsc.noaa.gov.

  • Ward, D. L., R. R. Boyce, F. R. Young & F. E. Olney, 1997. A review and assessment of transportation studies for juvenile Chinook salmon in the Snake River. North American Journal of Fisheries Management 17: 652–662.

    Article  Google Scholar 

  • White, M. A., J. C. Schmidt & D. J. Topping, 2005. Application of wavelet analysis for monitoring the hydrologic effects of dam operation: Glen Canyon Dam and the Colorado River at Lees Ferry, Arizona. River Research and Applications 21: 551–565.

    Article  Google Scholar 

  • Williams, J. G., S. G. Smith & W. D. Muir, 2001. Survival estimates for downstream migrant yearling juvenile salmonids through the Snake and Columbia rivers hydropower system, 1966–1980 and 1993–1999. North American Journal of Fisheries Management 21: 310–317.

    Article  Google Scholar 

  • Williams, J. G., S. G. Smith, R. W. Zabel, W. D. Muir, M. D. Scheuerell, B. P. Sandford, D. M. Marsh, R. A. McNatt & S. Achord, 2005. Effects of the Federal Columbia River Power System on Salmon Populations. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-63, 150 p. Available online at http://www.nwfsc.noaa.gov/publications.

  • Williams, J. G. & M. E. Tuttle, 1992. The Columbia River: fish habitat restoration following hydroelectric dam construction. In Thayer, G. W. (ed.), Restoring the Nation’s Marine Environment. Maryland Seagrant College, College Park: 405–422.

    Google Scholar 

  • Wilson, P. H., 2003. Using population projection matrices to evaluate recovery strategies for Snake River spring and summer chinook. Conservation Biology 17: 782–794.

    Article  Google Scholar 

  • World Commission on Dams (WCD), 2000. Dams and Development: A New Framework for Decision-making. Earthscan Publications, London.

    Google Scholar 

  • Zabel, R. W., 2002. Using “travel-time” data to characterize the behavior of migrating animals. American Naturalist 159: 372–387.

    Article  PubMed  Google Scholar 

  • Zabel, R. W., T. Wagner, J. L. Congleton, S. G. Smith & J. G. Williams, 2005. Survival and selection of migrating salmon from capture-recapture models with individual traits. Ecological Applications 15: 1427–1439.

    Article  Google Scholar 

  • Zabel, R. W. & J. G. Williams, 2002. Selective mortality in Chinook salmon: what is the role of human disturbance? Ecological Applications 12: 173–183.

    Article  Google Scholar 

Download references

Acknowledgments

Although the author has over 30 years of experience, it pales in comparison to the efforts expended by staff over the last 45 years to gain knowledge on anadromous fish in the Columbia River. The majority of research to determine effects of Columbia River dams on upstream and downstream migrating anadromous salmonids was conducted by our organization at the Northwest Fisheries Science Center, part of the National Marine Fisheries Service within the National Oceanic and Atmospheric Administration. The number of field technicians, field biologists, supervisory biologists, and data analysts over the years has numbered in the hundreds and are too numerous to identify individually. To them we give our sincere thanks, as we would not have the information presented here without their efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Williams.

Additional information

Guest editors: R. L. Welcomme & G. Marmulla

Hydropower, Flood Control and Water Abstraction: Implications for Fish and Fisheries

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, J.G. Mitigating the effects of high-head dams on the Columbia River, USA: experience from the trenches. Hydrobiologia 609, 241–251 (2008). https://doi.org/10.1007/s10750-008-9411-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9411-3

Keywords

Navigation