Skip to main content
Log in

The insect assemblage in water filled tree-holes in a European temperate deciduous forest: community composition reflects structural, trophic and physicochemical factors

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

(1) A study of the metazoan community occurring in water-filled tree-holes in southern Germany has been performed to determine the relationships among the key species of arthropods found within the community and a range of structural, physical and chemical factors, using multivariate techniques. (2) Four animal species were sufficiently common to allow identification of the preferred environments for their larvae. The aedine mosquito, Aedes geniculatus, prefers shallow open tree-holes with relatively little leaf litter even though these may represent less permanent water-bodies. The scirtid beetle, Prionocyhon serricornis, occurs in larger, deeper holes with greater amounts of leaf litter and a more predictable aquatic environment, although open water is not a requisite. Larvae of the orthocladiine chironomid, Metriocnemus cavicola, favours shallow more open tree-holes with higher litter content but with sufficient open water to ensure an adequate oxygen supply. The eristaline syrphid, Myatropa florea, favours shallow, open tree-holes with low litter content. (3) There is no evidence that interspecific interactions affect the distribution or abundance of any of these species. (4) The autecological results are discussed in light of those available for phytotelm dwellers elsewhere. The food-web overall may be interpreted as so simple that it is driven by ‘bottom-up’ environmental factors with no part played by those community-level ‘top-down’ processes that may be adduced for more complex, multi-trophic level webs occurring elsewhere. No “processing chain commensalism” could be found in the arthropod community of the temperate German deciduous tree-hole dwellers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barrera, R., 1996. Species concurrence and the structure of a community of aquatic insects in tree holes. Journal of Vector Ecology 21: 66–80.

    Google Scholar 

  • Bell, T., J. A. Newman, B. W. Silverman, S. L. Turner & A. K. Lilley, 2005. The contribution of species richness and composition to bacterial services. Nature (London) 436: 1157–1160.

    Article  CAS  Google Scholar 

  • Bradshaw, W. E. & C. M. Holzapfel, 1986. Habitat segregation among European tree-hole mosquitoes. National Geographic Research 2: 167–178.

    Google Scholar 

  • Bradshaw, W. E. & C. M. Holzapfel, 1988. Drought and the organization of tree-hole mosquito communities. Oecologia 74: 507–514.

    Article  Google Scholar 

  • Bradshaw, W. E. & C. M. Holzapfel, 1992. Resource limitation, habitat segregation, and species interaction of British tree-hole mosquitoes in nature. Oecologia 90: 227–237.

    Google Scholar 

  • Brandt, A. v., 1934. Untersuchungen in Baumhöhlengewässern auf Fagus sylvatica. Archiv für Hydrobiologie 27: 546–563.

    Google Scholar 

  • Carlisle, A., A. H. F. Brown & E. J. White, 1966. The organic matter and nutrient elements in the precipitation beneath a sessile oak (Quercus petraea) canopy. Journal of Ecology 54: 87–98.

    Article  Google Scholar 

  • Carpenter, S. R., 1982. Stemflow chemistry: effects on population dynamics of detritivorous mosquitoes in tree-hole ecosystems. Oecologia 53: 1–6.

    Article  Google Scholar 

  • Carpenter, S. R., 1983. Resource limitation of larval tree hole mosquitoes subsisting on beech detritus. Ecology 64: 219–22.

    Article  Google Scholar 

  • Eaton, J. S., G. E. Likens & F. H. Bormann, 1973. Throughfall and stemflow chemistry in a northern hardwood forest. Journal of Ecology 61: 495–508.

    Article  CAS  Google Scholar 

  • Fish, D. & S. L. Carpenter, 1982. Leaf litter and larval mosquito dynamics in tree-hole ecosystems. Ecology 63: 283–288.

    Article  Google Scholar 

  • Gallopin, G. C., 1972. Structural properties of food webs. In Patten, B. C. (ed.), Systems Analysis and Simulation in Ecology. Academic Press, New York: 241–282.

    Google Scholar 

  • Geiser, R., 1998. Rote Liste der Käfer (Coleoptera). In Bundesamt für Naturschutz: Rote Liste gefährdeter Tiere Deutschlands, Bonn-Bad Godesberg: 75–114.

  • Heard, S. B., 1994. Processing chain ecology: resource condition and interspecific interactions. Journal of Animal Ecology 63: 451–464.

    Article  Google Scholar 

  • Jenkins, B., R. L. Kitching & S. L. Pimm, 1992. Productivity, disturbance and food web structure at a local spatial scale in experimental container habitats. Oikos 65: 249–255.

    Article  Google Scholar 

  • Jongman, R. H. G., C. J. F. ter Braak & O. F. R. Van Tongeren (eds), 1995. Data Analysis in Community and Landscape Ecology. Cambridge University Press.

  • Kitching, R. L., 1971. Water filled tree-holes and their position in the woodland ecosystem. Journal of Animal Ecology 40: 281–302.

    Article  Google Scholar 

  • Kitching, R. L., 1972a. The immature stages of Dasyhelea dufouri Laboulbene (Diptera: Ceratopogonidae) in water-filled tree-holes. Journal of Entomology (Series A) 47: 109–114.

    Google Scholar 

  • Kitching, R. L., 1972b. Population studies of the immature stages of the tree-hole midge Metriocnemus martinii Thienemann (Diptera: Chironomidae). Journal of Animal Ecology 41: 53–62.

    Article  Google Scholar 

  • Kitching, R. L., 1983. Community structure in water-filled tree-holes in Europe and Australia—some comparisons and speculations. In Frank, J. H. & L. P. Lounibos (eds), Phytotelmata: Terrestrial Plants as Hosts of Aquatic Insect Communities. Plexus Press, Medford: 205–222.

    Google Scholar 

  • Kitching, R. L., 2000. Food Webs and Container Habitats: The Natural History and Ecology of Phytotelmata. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kitching, R. L., 2001. Food webs in phytotelmata: “bottom-up” and “top-down” explanations for community structure. Annual Review of Entomology 46: 729–760.

    Article  PubMed  CAS  Google Scholar 

  • Kitching, R. L. & C. Callaghan, 1982. The fauna of water-filled tree holes in box forest in south-east Queensland. Australian entomological Magazine 8: 61–70.

    Google Scholar 

  • Kitching, R. L. & S. L. Pimm, 1985. The length of food chains: phytotelmata in Australia and elsewhere. Proceedings of the Ecological Society of Australia 14: 123–140.

  • Klausnitzer, B., 1984. Käfer im und am Wasser. Die Neue Brehm Bibliothek, Ziemsen, Wittenberg.

    Google Scholar 

  • Kovac, D. & B. Streit, 1996. The arthropod community of bamboo internodes in peninsular Malasia: microzonation and trophic structure. In Edwards, D. S., W. E. Booth & S. C. Choy (eds), Tropical Rainforest Research: Current Issues. Kluwer, Dordrecht: 85–89.

    Google Scholar 

  • Kovac, D., 1994. Die Tierwelt des Bambus: Ein Modell für komplexe tropische Lebensgemeinschaften. Natur und Museum 124: 119–136.

    Google Scholar 

  • Kurihara, Y., 1959. Synecological analysis of the biotic community in microcosm. IV. Studies on the relations of Diptera larvae to pH in bamaboo containers. Science Reports, Tohoku University Series IV (Biology) 25: 165–171.

    Google Scholar 

  • Mayer, K., 1938. Zur Kenntnis der Buchenhöhlenfauna. Archiv für Hydrobiologie 33: 388–400.

    Google Scholar 

  • Mercer, D. R., 1993. Effect of tannic acid concentration on development of the western tree-hole mosquito Aedes sierrensis. Journal of Chemical Ecology 19: 1119–1127.

    Article  CAS  Google Scholar 

  • Palmer, M. W., 1993. Putting things in even better order: the advantages of canonical correspondence analysis. Ecology 74: 2215–2230.

    Article  Google Scholar 

  • Paradise, C. J., 1999. Interactive effects of resources and a processing chain interaction in tree-hole habitats. Oikos 85: 529–535.

    Article  Google Scholar 

  • Paradise, C. J. & W. A. Dunson, 1997a. Effects of dissolved water cations on tree-hole insect communities. Annals Entomological Society of America 90: 798–805.

    CAS  Google Scholar 

  • Paradise, C. J. & W. A. Dunson, 1997b. Insect species interactions and resource effects in tree-holes: are helodid beetles bottom-up facilitators of midge populations? Oecologia 109: 303–312.

    Article  Google Scholar 

  • Paradise, C. J. & W. A. Dunson, 1998. Relationship of atmospheric deposition to the water chemistry of tree-hole habitats. Environmental Toxicology and Chemistry 17: 362–368.

    Article  CAS  Google Scholar 

  • Paradise, C. J. & K. L. Kuhn, 1999. Interactive effects of pH and leaf litter resources on scirtid beetles inhabiting tree-holes. Freshwater Ecology 41: 43–49.

    Article  Google Scholar 

  • Pavisic, V., 1941. Über die Ökologie der Baumhöhlenmückenlarven in Jugoslawien. Archiv für Hydrobiologie 33: 700–705.

    Google Scholar 

  • Pimm, S. S. L. & R. L. Kitching, 1987. The determinants of food chain lengths. Oikos 50: 302–307.

    Article  Google Scholar 

  • Rohnert, U., 1950. Wassererfüllte Baumhohlen und ihre Besiedlung. Ein Beitrag zur Fauna Dendrolimnetica. Archiv für Hydrobiologie 44: 475–516.

    Google Scholar 

  • Rotheray, G. E., 1993. Colour Guide to Hoverfly Larvae in Britain and Europe. Whiteley, Sheffield.

    Google Scholar 

  • Schmidl, J., H. Bussler & L. Lorenz, 2003. Die Rote Liste gefährdeter Käfer Bayerns (2003) im Überblick. Bayerisches Landesamt für Umweltschutz, Beiträge zum Artenschutz 166: 87–89.

    Google Scholar 

  • Skidmore, P., 1985. The Biology of the Muscidae of the World. Junk, Dordrecht.

    Google Scholar 

  • Sota, T., 1996. Effect of capacity on resource input and the aquatic metazoan community structure in phytotelmata. Researches in Population Ecology 38: 65–73.

    Article  Google Scholar 

  • Srivastava, D. S., 2006. Habitat structure, trophic structure and ecosystem function: interactive effects in a bromeliad-insect community. Oecologia 149: 493–504.

    Article  PubMed  Google Scholar 

  • Srivastava, D. S., J. Kolasa, J. Bengtsson, A. Gonzalez, S. P. Lawler, T. E. Miller, P. Munguia, T. Romanuk, D. C. Schneider & M. K. Trzcinski, 2004. Are natural microcosms useful model systems for ecology? Trends in Ecology and Evolution 19: 379–384.

    Article  PubMed  Google Scholar 

  • Tate, P., 1935. The larvae of Phaonia mirabilis Ringdahl, predatory upon mosquito larvae (Diptera, Anthomyidae). Parasitology 27: 556–560.

    Article  Google Scholar 

  • ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Article  Google Scholar 

  • ter Braak, C. J. F., 1988. CANOCO—a FORTRAN Programme for Canonical Community Ordination. Agricultural Mathematics Group, Wageningen.

    Google Scholar 

  • ter Braak, C. J. F., 1990. Update Notes: CANOCO Version 3.1. Agricultural Mathematics Group, Wageningen.

    Google Scholar 

  • ter Braak, C. J. F. & P. Smilauer, 2002. Canoco for Windows 4.5. Biometris Plant Research International, Wageningen.

    Google Scholar 

  • Thienemann, A., 1934. Der Tierwelt der tropischen Pflanzengewässer. Archiv für Hydrobiologie Supplementum 13: 1–91.

    Google Scholar 

  • Thienemann, A., 1954. Chironomus: Leben, Verbreitung und wirtschaftliche Bedeutung der Chironomiden. Binnengewässer 20: 1–834.

    Google Scholar 

  • Varga, L., 1928. Ein interessanter Biotop der Biozönose von Wasserorganismen. Biologisches Zentralblatt 48: 143–161.

    Google Scholar 

  • Walentowski, H., J. Ewald, A. Fischer, C. Kölling & W. Türk, 2004. Handbuch der natürlichen Waldgesellschaften Bayerns. Geobotanica-Verlag, Freising.

    Google Scholar 

  • Walker, E. D. & R. W. Merritt, 1988. The significance of leaf detritus to mosquito (Diptera: Culicidae) productivity in tree holes. Environmental Entomology 17: 199–206.

    Google Scholar 

  • Walker, E. D., D. L. Lawson, R. W. Merritt, W. T. Morgan & M. J. Klug, 1991. Nutrient dynamics, bacterial populations, and mosquito productivity in tree hole ecosystems and microcosms. Ecology 72: 1529–1546.

    Article  Google Scholar 

  • Yanoviak, S. P., 2001. The macrofauna of water-filled tree holes on Barro Colorado Island, Panama. Biotropica 33: 110–120.

    Article  Google Scholar 

  • Yanoviak, S. P. & O. M. Fincke, 2005. Sampling methods for water-filled tree holes and their artificial analogues. In Leather, S. R. (ed.), Insect Sampling in Forest Ecosystems. Blackwell: 168–185.

  • Yee, D. A. & S. A. Juliano, 2006. Consequences of detritus type in an aquatic microsystem: effects on water quality, micro-organisms and performance of the dominant consumer. Freshwater Biology 51: 448–459.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Eva Köhnlein, Ina Wölfel, Tomi Engel and, especially, Monika Nunn for help in data collection. We are grateful, also, to Barbara Michler, Hagen Fischer and Markus Tarrasconi for comments on data analysis and to H.-W. Scheloske, University Erlangen-Nuremberg for supervising the diploma thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Schmidl.

Additional information

Handling editor: K. Martens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidl, J., Sulzer, P. & Kitching, R.L. The insect assemblage in water filled tree-holes in a European temperate deciduous forest: community composition reflects structural, trophic and physicochemical factors. Hydrobiologia 598, 285–303 (2008). https://doi.org/10.1007/s10750-007-9163-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-9163-5

Keywords

Navigation