Skip to main content
Log in

Biological availability and humic properties of dissolved organic carbon in Lake Balaton (Hungary)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The biological availability of dissolved organic carbon (DOC) was experimentally studied in water samples collected at the mouth of the River Zala and in the western and eastern basin of Lake Balaton (Hungary) in four seasons. The water samples were filter-sterilized and inoculated with the in situ bacterial population. The concentration of fulvic and humic acids were analyzed at the beginning of the experiment. The bacterioplankton biomass and DOC concentration were measured on day 0 and 28. The decrease in the DOC concentration and the ratio of the bacterial C/initial DOC concentration showed the microbial utilization of DOC. No seasonal changes in DOC availability were found at any of the sampling stations. The DOC bioavailability was higher in the river than in the lake water. A strong positive correlation was found between the bioavailability and the humic properties of DOC. The observed changes in the organic matter composition of Lake Balaton support the view that much of the not readily utilizable ‘refractory’ DOM resides in the non-humic pool in standing waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amon, R. M. W. & R. Benner, 1996a. Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon river system. Geochimica et Cosmochimica Acta 60: 1783–1792.

    Article  CAS  Google Scholar 

  • Amon, R. M. W. & R. Benner, 1996b. Bacterial utilization of different size classes of dissolved organic matter. Limnology and Oceanography 41: 41–51.

    Article  CAS  Google Scholar 

  • Anderson, T. R. & C. M. Turley, 2003. Low bacterial growth efficiency in the oligotrophic eastern Mediterranean Sea: a modelling analysis. Journal of Plankton Research 25: 1011–1019.

    Article  CAS  Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.

    Google Scholar 

  • Benner, R. & B. Biddanda, 1998. Photochemical transformations of surface and deep marine dissolved organic matter: Effects on bacterial growth. Limnology and Oceanography 43: 1373–1378.

    Article  CAS  Google Scholar 

  • Biddanda, B., M. Ogdahl & J. Cotner, 2001. Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters. Limnology and Oceanography 46: 730–739.

    Article  Google Scholar 

  • Boyer, J. N., S. K. Dailey, P. J. Gibson, M. T. Rogers & D. Mir-Gonzales, 2006. The role of dissolved organic matter bioavailabilty in promoting phytoplankton blooms in Florida Bay. Hydrobiologia 569: 71–85.

    Article  CAS  Google Scholar 

  • Brakke, D. F., D. H. Landers & J. M. Eilers, 1988. Chemical and physical characteristics of lakes in the Northeastern United States. Environmental Science and Technology 22: 155–163.

    Article  CAS  PubMed  Google Scholar 

  • Bratbak, G., 1985. Bacterial Biovolume and Biomass Estimations. Applied and Environmental Microbiology 49: 1488–1493.

    PubMed  CAS  Google Scholar 

  • Cole, J. J., G. E. Likens & D. L. Strayer, 1982. Photosynthetically produced dissolved organic carbon: An important carbon source for planktonic bacteria. Limnology and Oceanography 27: 1080–1090.

    CAS  Google Scholar 

  • Cuthbert, I. D. & P. del Giorgio, 1992. Toward a standard method of measuring color in freshwater. Limnology and Oceanography 37: 1319–1326.

    CAS  Google Scholar 

  • Eiler, A., S. Langenheder, S. Bertilsson & L. J. Tranvik, 2003. Heterotrophic bacterial growth efficiency and community structure at different natural organic carbon concentrations. Applied and Environmental Microbiology 69: 3701–3709.

    Article  PubMed  CAS  Google Scholar 

  • Herodek, S., 1986. Phytoplankton Changes During Eutrophycation and P and N Metabolism. In Somlyódy, L. & G. van Straten (eds), Modeling and Managing Shallow Lake Eutrophycation. Springer Verlag, 183–204.

  • Hobbie, J. E., J. Daley & S. Jasper, 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology 33: 1225–1228.

    PubMed  CAS  Google Scholar 

  • Istvánovics, V. & S. Herodek, 1995. Estimation of net uptake and leakage rates of orthophosphate from 32P uptake kinetics by a force-flow model. Limnology and Oceanography 40: 17–32.

    Article  Google Scholar 

  • Jansson, M, A.-K. Bergström, P. Blomqvist & S. Drakarh, 2000. Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81: 3250–3255.

    Google Scholar 

  • Jonsson, A., M. Meili, A.-K. Bergström & M. Jansson, 2001. Whole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Örträsket, N. Sweden). Limnology and Oceanography 46: 1691–1700.

    Article  CAS  Google Scholar 

  • Jugnia, L.-B., M. Richardot, D. Debroas & J. Dévaux, 2006. Bacterial production in the recently flooded Sep Reservoir: Diel changes in relation to dissolved carbohydrates and combined amino acids. Hydrobiologia 563: 421–430.

    Article  CAS  Google Scholar 

  • Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystem, 2nd edn. Cambridge University Press, Cambridge. 509 pp.

    Google Scholar 

  • Kritzberg, E. S., J. J. Cole, M. M. Pace & W. Granéli, 2006. Bacterial growth on allochthonous carbon in humic and nutrient-enriched lakes: results from Whole-Lake 13C addition experiments. Ecosystems 9: 489–499.

    Article  CAS  Google Scholar 

  • Leff, L. G. & J. L. Meyer, 1991. Biological availability of dissolved organic carbon along the Ogeechee River. Limnology and Oceanography 36: 315–323.

    Article  CAS  Google Scholar 

  • Maie, N., J. N. Boyer, C. Yang & R. Jaffé, 2006. Spatial, geomorphological, and seasonal variability of CDOM in estuaries of the Florida Coastal Everglades. Hydrobiologia 569: 135–150.

    Article  CAS  Google Scholar 

  • Meili, M., 1992. Sources, concentrations and characteristics of organic matter in softwater lakes and streams of the Swedish forest region. Hydrobiologia 229: 23–41.

    CAS  Google Scholar 

  • Moran, M. A. & R. E. Hodson, 1990. Bacterial production on humic and nonhumic components of dissolved organic carbon. Limnology and Oceanography 35: 1744–1756.

    CAS  Google Scholar 

  • Moran, M. A., W. M. Sheldon Jr. & R. G. Zepp, 2000. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnology and Oceanography 45: 1254–1264.

    Article  CAS  Google Scholar 

  • Mózes, A., M. Présing & L. Vörös, 2006. Seasonal dynamics of picocyanobacteria and picoeucaryotes in a large shallow lake (Lake Balaton, Hungary). International Review of Hydrobiology 91: 38–50.

    Article  CAS  Google Scholar 

  • Pomeroy, L. R., 1974. The ocean’s food web, a changing paradigm. Bioscience 24: 499–503.

    Article  Google Scholar 

  • Schulten, H. R., 1995. The three-dimensional structure of humic substances and soil organic matter studied by computational analytical chemistry. Fresenius’ Journal of Analytical Chemistry 351: 62–73.

    Article  CAS  Google Scholar 

  • Servais, P., A. Anzil & C. Ventresque, 1989. Simple method for determination of biodegradable dissolved organic carbon in water. Applied and Environmental Microbiology 55: 2732–2734.

    PubMed  CAS  Google Scholar 

  • Sommaruga, R., 2001. The role of solar UV radiation in the ecology of alpine lakes. Journal of Photochemistry and Photobiology B: Biology 62: 35–42.

    Article  CAS  Google Scholar 

  • Søndergaard, M. & M. Middelboe, 1995. A cross-system analysis of labile dissolved organic carbon. Marine Ecology Progress Series 118: 283–294.

    Google Scholar 

  • Standard Methods for the Examination of Water and Wastewater, 1995. In A. D. Eaton, L. S. Clesceri & A. E. Greenberg (eds), 19th edn. American Public Health Association, Washington.

  • Thurman, E. M., 1985. Organic Geochemistry of Natural Waters. Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht, The Netherlands, 497 pp.

    Google Scholar 

  • Tranvik, L. J., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microbial Ecology 16: 311–322.

    Article  CAS  Google Scholar 

  • Tranvik, L. J. & M. G. Höfle, 1987. Bacterial growth in mixed cultures on dissolved organic carbon from humic and clear waters. Applied and Environmental Microbiology 53: 482–488.

    PubMed  CAS  Google Scholar 

  • V.-Balogh, K. & L. Vörös, 2001. Wetlands on the watershed of Lake Balaton and their impact on water quality. In BIWAKO 2001. 9th International Conference on the Conservation and Management of Lakes, Conference Proceedings, Session 5. 5B-P06, 197–200 .

  • V.-Balogh, K., L. Vörös, N. Tóth & M. Bokros, 2003. Changes of organic matter’s properties along the longitudinal axis of a large shallow lake (Lake Balaton). Hydrobiologia 506–509: 67–74.

    Article  Google Scholar 

  • V.-Balogh, K., L. Vörös, A. W. Kovács & N. Tóth, 2006. The Formation of Hydrogen Peroxide by Photodegradation of Chromophoric Organic Substances in Fresh Waters. In Frimmel F. H. & G. Abbt-Braun (eds), Humic Substances – Linking Structure to Functions. Proceedings of the 13th Meeting of the International Humic Substances Society, July 30–August 4, 2006, Universität Karlsruhe (TH). 45: 909–912.

  • Volk, C. J., C. B. Volk & L. A. Kaplan, 1997. Chemical composition of biodegradable dissolved organic matter in streamwater. Limnology and Oceanography 42: 39–44.

    Article  CAS  Google Scholar 

  • Waiser, M. J. & R. D. Robarts, 2000. Changes in composition and reactivity of allochthonous DOM in a prairie saline lake. Limnology and Oceanography 45: 763–774.

    Article  CAS  Google Scholar 

  • Wetzel, R. G., 1983. Limnology. Saunders, Philadelphia, PA, 767 pp.

    Google Scholar 

  • Wetzel, R. G., 1992. Gradient-dominated ecosystems: Sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229: 181–198.

    CAS  Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1991. Limnological Analyses, 2nd edn. Springer-Verlag.

Download references

Acknowledgements

This work has been financially supported by the Balaton Project grant of the Office of the Prime Minister (MeH). We wish to thank the Central Transdanubian Environmental and Water Authority and the West Transdanubian Environmental and Water Authority for the PO4-P, NO3-N and NH4-N values and to Kati Vörös for correcting the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin V.-Balogh.

Additional information

Handling editor: J. Cole

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tóth, N., Vörös, L., Mózes, A. et al. Biological availability and humic properties of dissolved organic carbon in Lake Balaton (Hungary). Hydrobiologia 592, 281–290 (2007). https://doi.org/10.1007/s10750-007-0768-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-0768-5

Keywords

Navigation