Skip to main content

Advertisement

Log in

Genetic structure of the red mangrove (Rhizophora mangle L.) on the Colombian Pacific detected by microsatellite molecular markers

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Rhizophora mangle, one of the five species of the genus Rhizophora, is found widely distributed along the American and West African coasts. This species is one of the principal constituents of the mangrove ecosystem in Colombia and is also found within the most important economic activities for the communities that inhabit the littoral. In order to assess the degree of genetic diversity of R. mangle in five populations of the Colombian Pacific, nuclear microsatellite molecular markers were used. In 92 individuals sampled, it was found that 100% of the loci were polymorphic \( (\overline H _0 = 0.494) \), and no private alleles were detected. The population structure of R. mangle in the Colombian Pacific, was highly significant (P < 0.001); however, the greatest differentiation was detected at the within-population level (94.62%). For the populations of La Plata, Virudó and Charambirá, the tendency toward panmixia could be the cause of the low differentiation among these three locations. Within populations, the genetic diversity revealed a deviation from Hardy–Weinberg equilibrium with high significance in Virudó and Tumaco, where it appears the intense anthropogenic activity has exercised strong pressure on the red mangrove, resulting in the possible fragmentation of the local landscape and therefore an increase in the rate of endogamy within these populations. Despite this situation, our study―one of the first developed in genetics of the red mangrove in Colombia―did not show evidence of recent bottleneck effects or deterioration in its genetic composition, which could be exploited to propose management and restoration programs for the zones where the forests of this species are degraded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bassam, B. J., G. Caetano-Anollés & P. M. Gresshoff, 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry 196: 80–83.

    Article  PubMed  CAS  Google Scholar 

  • Brondani, R. P. V., C. Brondani, D. Tarchini & D. Grattapaglia, 1998. Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla. Theoretical Applied in Genetics 97: 816–827.

    Article  CAS  Google Scholar 

  • Cabrera, E. E. & J. A. Reyna, 1997. Evaluación del impacto por derrames de hidrocarburos en la ensenada de Tumaco. Comprobación de la efectividad de los planes de contingencia. Boletín Científico del Centro Contra Contaminación del Pacífico, Nariño, Colombia.

  • Castillo-Cárdenas, M. F., N. Toro-Perea & H. Cárdenas-Henao, 2005. Population genetic structure of Neotropical mangrove species on the Colombian Pacific Coast: Pelliciera rhizophorae (Pellicieraceae). Biotropica 37: 266–273.

    Article  Google Scholar 

  • Cerón-Souza, I., N. Toro-Perea & H. Cárdenas-Henao, 2005. Population genetic structure of Neotropical mangrove species on the Colombian Pacific Coast: Avicennia germinans (Avicenniaceae). Biotropica 37: 258–265.

    Article  Google Scholar 

  • Chase, M., R. Kesseli & K. Bawa, 1996. Microsatellites markers for population and conservation genetics of tropical trees. American Journal of Botany 83: 51–57.

    Article  Google Scholar 

  • Duke, N. C., J. A. H. Benzie, J. A. Goodall & E. R. Ballment, 1998. Genetic structure and evolution of species in the mangrove genus Avicennia (Avicennianceae) in the Indo-West Pacific. Evolution 52: 1612–1626.

    Article  Google Scholar 

  • Duke, N. C., E. Yuk-Ying-Lo & M. Sun, 2002. Global distribution and genetic discontinuities of mangroves―emerging patterns in the evolution of Rhizophora. Trees 16: 65–79.

    Article  Google Scholar 

  • Doyle, J. J. & J. L. Doyle, 1987. Isolation of DNA from fresh plant tissue. Focus 12: 13–15.

    Google Scholar 

  • Echt, C. S., P. May-Marquardt, M. Hseih & R. Zahorchak, 1996. Characterization of microsatellite markers in eastern white pine. Genome 39: 1102–1108.

    PubMed  CAS  Google Scholar 

  • FAO, 2003. The situation and developments in the forest sector. In State of the world’s forests 2003. Part I. Rome.

  • Giang, L. H., P. N. Hong, M. S. Tuan & K. Harada, 2003. Genetic variation of Avicennia marina (Forsk) Vierh. (Avicenniaceae) in Vietnam revealed by microsatellites and AFLP markers. Genes and Genetic Systems 78: 399–407.

    Article  CAS  Google Scholar 

  • Goodman, S. J., 1997. RstCalc: a collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and determining their significance. Molecular Ecology 6: 881–885.

    Article  CAS  Google Scholar 

  • Guevara, O. A., H. Sánchez, G. O. Murcia, et al. 1998. Conservación y uso sostenible de los manglares del Pacífico colombiano. Ministerio del Medio Ambiente-ACOFORE-OIMT, Santafé de Bogotá.

  • Hamrick, J. L. & M. D. Loveless, 1989. The genetic structure of tropical tree populations: associations with reproductive biology. In Bock, J. H. & J. B. Linhart (eds), The Evolutionary Ecology of Plants. Westview Press, Boulder, CO, 129–146.

    Google Scholar 

  • Huiskes, A. H. L., B. P. Koutstaal, P. M. J. Herman, W. G. Beeftink, M. M. Markusse & W. de Munck, 1995. Seed dispersal of halophytes in tidal salt marshes. Journal of Ecology 83: 559–567.

    Article  Google Scholar 

  • Kalinowski, S. T. & M. L. Taper, 2006. Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conservation Genetics. DOI: 10.1007/s10592-006-9134-9.

  • Karhu, A., C. Vogl, G. F. Moran, J. C. Bell & O. Savolainen, 2005. Analysis of microsatellite variation in Pinus radiata reveals effects of genetic drift but no recent bottlenecks. Journal of Evolutionary Biology 0(0). DOI: 10.1111/j.1420-9101.2005.00982.x.

  • Lakshmi, M., M. Parani & A. Parida, 2002. Molecular phylogeny of mangroves. IX molecular markers assisted intra-specific variation and species relationships in the Indian mangrove tribe Rhizophoreae. Aquatic Botany 74: 201–217.

    Article  CAS  Google Scholar 

  • Lewis, P. O. & D. Zaykin, 2001. Genetic data analysis: Computer program for the analysis of allelic data. Version 1.0 (d16c). Free program distributed by the authors over the Internet from http://www.lewis.eeb.uconn.edu/lewishome/software.html.

  • Maguire, T., P. Saenger, P. Baverstock & R. Hernry, 2000a. Microsatellite analysis of genetic structure in the mangrove species Avicennia marina (Forsk) Vierh. (Avicenniaceae). Molecular Ecology 9: 1853–1862. OJO: Hay q cambiar el orden de estas dos referentes ya q el siguiente tiene q ir primero por orden alfabético. Entonces sería 2000a.

  • Maguire, T., K. Edwards, P. Sanger & R. Henry, 2000b. Characterization and analysis of microsatellite loci in a mangrove species, Avicennia marina (Forsk) Veer. (Avicenniaceae). Theoretical and Applied Genetics 101: 279–285.

    Article  CAS  Google Scholar 

  • Maguire, T., R. Peakall & P. Sanger, 2002. Comparative analysis of genetic diversity in the mangrove species Avicennia marina (Forsk) Vierh (Avicenniaceae) detected by AFLPs and SSRs. Theoretical and Applied Genetics 104: 388–398.

    Article  PubMed  CAS  Google Scholar 

  • Mantel, N., 1967. The detection of disease clustering and a generalised regression approach. Cancer Research 27: 209–220.

    PubMed  CAS  Google Scholar 

  • Melville, F. & M. Burchett, 2002. Genetic variation in Avicennia marina in three estuaries of Sydney (Australia) and implications for rehabilitation and management. Marine Pollution Bulletin 44: 469–479.

    Article  PubMed  CAS  Google Scholar 

  • Miller, M. P., 1997. Tools for population genetic analysis, version 1.3. A Windows program for the analysis of allozymes and molecular population genetic data. Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ.

    Google Scholar 

  • Montagut, E. A. & E. E. Cabrera, 1997. Situación de riesgo en la Ensenada de Tumaco. Boletín Científico del Centro Contra Contaminación del Pacífico, Nariño, Colombia. Ciudad?.

  • Nei, M., 1972. Genetic distance between populations. American Naturalist 106: 283–292.

    Article  Google Scholar 

  • Nettel, A., F. Rafii & R. Dodd, 2005. Characterization of microsatellite markers for the mangrove tree Avicennia germinans L. (Avicenniaceae). Molecular Ecology Notes 5: 103–105.

    Article  CAS  Google Scholar 

  • Núñez-Farfán, J., C. A. Domínguez, L. E. Eguiarte, A. Cornejo, M. Quijano, J. Vargas & R. Dirzo, 2001. Genetic divergence among Mexican populations of red mangle (Rhizophora mangle): geographic and historic effects. Evolutionary Ecology Research 4: 1049–1064.

    Google Scholar 

  • Olsen, J., W. T. Stam, J. A. Coyer, T. B. H. Reusch & M. Billingham, et al. 2004. North Atlantic phylogeography and large-scale population differentiation of the seagrass Zostera marina L. Molecular Ecology 13: 1923–1941.

    Article  PubMed  CAS  Google Scholar 

  • Parani, M., M. Lakshmi & S. Etango, et al. 1997. Molecular phylogeny of mangroves. II. Intra-and interspecific variation in Avicennia revealed by RAPD and RFLP markers. Genome 40: 487–495.

    CAS  Google Scholar 

  • Pérez, E., 2001. Estimación de la variabilidad genética mediante el uso del marcador molecular AFLP y relación de la variabilidad morfológica con algunos parámetros ambientales en dos poblaciones de mangle (Rhizophora mangle) en la Costa Pacífica Colombiana. BSc thesis. Universidad del Valle. Colombia.

  • Petit, R. J., A. E. Mousadik & O. Pons, 1998. Identifying populations for conservation on the basis of genetic markers. Conservation Biology 12: 844–855.

    Article  Google Scholar 

  • Rabinowitz, D., 1978. Dispersal properties of mangrove propagules. Biotropica 10: 47–57.

    Article  Google Scholar 

  • Raymond, M. & F. Rousset, 1995. An exact test for population differentiation. Evolution 49: 1280–1283

    Article  Google Scholar 

  • Rosero, C., E. Gaitan, H. Cardenas, N. Toro & J. Tohme, 2002. Polymorphic microsatellites in a mangrove species, Rhizophora mangle (L.) (Rhizophoraceae). Molecular Ecology Notes 2: 281–283.

    Article  Google Scholar 

  • SAF, 1995. Diagnóstico ecológico-ambiental y socio-económico del manglar de la costa Pacífica del Departamento del Valle del Cauca. Corporación Autónoma Regional del Cauca CVC/Sistemas Agroforestales Ltda, Santiago de Cali (Valle), Colombia.

  • Saitou, N. & M. Nei, 1987. The Neighbor-Joining method: a new method for reconstructing phylogentic trees. Molecular Biology and Evolution 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Schneider, S., J. M. Kueffer, D. Roessli & L. Excoffier, 2000. Arlequin version 2000: A software for population genetic analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.

    Google Scholar 

  • Schwarzbach, A. E. & R. E. Ricklefs, 2000. Systematic affinities of Rhizophoraceae and Anisophylleaceae, and intergeneric relationships within Rhizophoraceae, based on chloroplast DNA, nuclear ribosomal DNA, and morphology. American Journal of Botany 87: 547–564.

    Article  PubMed  CAS  Google Scholar 

  • Sierra-Paz, S., 2000. Estudio de la relación entre los cambios en la zonación y estructura del ecosistema de manglar y la actividad antrópica que se ha ejercido sobre él en la Ensenada de Virudó (Bajo Baudó, Chocó), Pacífico colombiano. B.Sc. Thesis. Universidad del Valle, Cali, Colombia.

  • Slatkin, M., 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457–462.

    PubMed  CAS  Google Scholar 

  • Tomlinson, P. B., 1986. The botany of mangroves. Cambridge U. Press. Cambridge.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Colciencias (Code 1106-09-509-98, contract 367-98) and to the Universidad del Valle for financing the project, “Ecogenetics of populations of mangrove of the Colombian Pacific” Phase I: Molecular differentiation within and between genera of mangroves of the Colombian Pacific Coast. We would also like to express our gratitude to the communities of the localities of La Plata Island, Virudó, Chontal, Tumaco and Charambirá; and to the biologist Martha Sofía González of the Universidad de Nariño for her collaboration in taking samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Fernanda Castillo-Cárdenas.

Additional information

Handling editor: K. Martens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arbeláez-Cortes, E., Castillo-Cárdenas, M.F., Toro-Perea, N. et al. Genetic structure of the red mangrove (Rhizophora mangle L.) on the Colombian Pacific detected by microsatellite molecular markers. Hydrobiologia 583, 321–330 (2007). https://doi.org/10.1007/s10750-007-0622-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-0622-9

Keywords

Navigation