Skip to main content
Log in

Differentiation of Chara intermedia and C. baltica compared to C. hispida based on morphology and amplified fragment length polymorphism

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Charophytes are macrophytic green algae, occurring in standing and running waters throughout the world. Species descriptions of charophytes are contradictive and different determination keys use various morphologic characters for species discrimination. Chara intermedia Braun, C. baltica Bruzelius and C. hispida Hartman are treated as three species by most existing determination keys, though their morphologic differentiation is based on different characteristics. Amplified fragment length polymorphism (AFLP) was used to detect genetically homogenous groups within the C. intermedia-C. baltica-C. hispida-cluster, by the analysis of 122 C. intermedia, C. baltica and C. hispida individuals from central and northern Europe. C. hispida clustered in a distinct genetic group in the AFLP analysis and could be determined morphologically by its aulacanthous cortification. However, for C. intermedia and C. baltica no single morphologic character was found that differentiated the two genetic groups, thus C. intermedia and C. baltica are considered as cryptic species. All C. intermedia specimen examined came from freshwater habitats, whereas the second group, C. baltica, grew in brackish water. We conclude that the species differentiation between C. intermedia and C. baltica, which is assumed to be reflected by the genetic discrimination groups, corresponds more with ecological (salinity preference) than morphologic characteristics.

Based on the genetic analysis three differing colonization models of the Baltic Sea and the Swedish lakes with C. baltica and C. intermedia were discussed. As samples of C. intermedia and C. baltica have approximately the same Jaccard coefficient for genetic similarity, we suggest that C. baltica colonized the Baltic Sea after the last glacial maximum from refugia along the Atlantic and North Sea coasts. Based on the similarity of C. intermedia intermediate individuals of Central Europe and Sweden we assume a colonization of the Swedish lakes from central Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams, R. P., J. A. Morris, R. N. Pandey & A. E. Schwarzbach, 2005. Cryptic speciation between Juniperus deltoides and Juniperus oxycedrus (Cupressaceae) in the Mediterranean. Biochemical Systematics and Ecology 33: 771–787.

    Article  CAS  Google Scholar 

  • Anadon, P., R. Utrilla & A. Vazquez, 2002. Mineralogy and Sr–Mg geochemistry of charophyte carbonates: a new tool for paleolimnological research. Earth and Planetary Science Letters 197: 205–214.

    Article  CAS  Google Scholar 

  • Benzie, J. A. H., E. Ballment, J. R. M. Chisholm & J. M. Jaubert, 2000. Genetic variation in the green alga Caulerpa taxifolia. Aquatic Botany 66: 131–139.

    Article  CAS  Google Scholar 

  • Bisson, M. A. & D. Bartholomew, 1984. Osmoregulation or turgor regulation in Chara? Plant Physiology 74: 252–255.

    PubMed  CAS  Google Scholar 

  • Bhattacharya, D. & L. Medlin, 1998. Algal phylogeny and the origin of land plants 1. Plant Physiology 116: 9–15.

    Article  CAS  Google Scholar 

  • Björck, S., 1995. A review of the history of the Baltic Sea, 13.0–8.0 ka BP. Quaternary International 27: 19–90.

    Article  Google Scholar 

  • Blindow, I., 2000. Distribution of Charophytes along the Swedish coast in relation to salinity and eutrophication. International Review of Hydrobiology 85: 707–717.

    Article  Google Scholar 

  • Blindow, I. & M. Schütte, 2006. Elongation and mat formation of Chara aspera under different light and salinity conditions. Hydrobiologia (in revision).

  • Charalambidou, I. & L. Santamaria, 2005. Field evidence for the potential of waterbirds as dispersers of aquatic organisms. Wetlands 25: 252–258.

    Article  Google Scholar 

  • Corillion, R., 1972. Les Charophycees de France et d’ Europe Occidentale. Otto Koeltz Verlag, Koenigstein-Taunus.

    Google Scholar 

  • Excoffier, L., P. E. Smouse & J. M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.

    PubMed  CAS  Google Scholar 

  • Fox, A. D., T. A. Jones, R. Singleton & A. D. Q. Agnew, 1994. Food supply and the effects of recreational disturbance on the abundance and distribution of wintering Pochard on a gravel pit complex in southern Britain. Hydrobiologia 280: 253–261.

    Article  Google Scholar 

  • Garcia-Mas, J., M. Oliver & H. Gomez-Paniagua, 2000. Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon. Theoretical and Applied Genetics 101: 860–864.

    Article  CAS  Google Scholar 

  • Gleeson, D. M., R. L. J. Howitt & N. Ling, 1999. Cryptic species of mudfish in New Zealand. Molecular Ecology 8: 47–57.

    Article  PubMed  CAS  Google Scholar 

  • Gollerbakh, M. M. & L. K. Krasavina, 1983. Translated by Z. Sinkeviciene. Opredelitel´ presnovodnykh vodoroslej SSSR, Vypusk 14, Kharovyje codorosili-Charophyta. Leningrad “Nauka”.

  • Hampe, A., J. Arroyo, P. Jordano & R. J. Petit, 2003. Rangewide phylogeography of a bird-dispersed Eurasian shrub: contrasting Mediterranean and temperate glacial refugia. Molecular Ecology 12: 3415–3426.

    Article  PubMed  CAS  Google Scholar 

  • Hongtrakul, V., G. M. Huestis & S. J. Knapp, 1997. Amplified fragment length polymorphisms as a tool for DNA fingerprinting sunflower germplasm: genetic diversity among oilseed inbred lines. Theoretical and Applied Genetics 95: 400–407.

    Article  CAS  Google Scholar 

  • Kardolus, J. P., H. J. Van Eck & S. J. Van den Berg, 1998. The potential of AFLPs in biosystematics: a first application in Solanum taxonomy (Solanaceae). Plant Systematic and Evolution 210: 87–103.

    Article  Google Scholar 

  • Karol, K. G., R. M. McCourt, M. T. Cimino & C. F. Delwiche, 2001. The closest living relatives of land plants. Science 294: 2351–2353.

    Article  PubMed  CAS  Google Scholar 

  • Knapton, R. W. & S. A. Petrie, 1999. Changes in distribution and abundance of submerged macrophytes in the Inner Bay at Long Point, Lake Erie: implications for foraging waterfowl. Journal of Great Lakes Research 25: 783–798.

    Article  Google Scholar 

  • Kontula, T. & R. Väinölä, 2001 Postglacial colonization of Northern Europe by distinct phylogeographic lineages of the bullhead, Cottus gobio. Molecular Ecology 10: 1983–2002.

    Article  PubMed  CAS  Google Scholar 

  • Krause, W., 1997. Charales (Charophyceae). In Ettl, A., G. Gärtner, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa. Vol. 18, G. Fischer, Jena.

    Google Scholar 

  • Kremling, K., J. J. S. Tokos, L. Brugmann & H. P. Hansen, 1997. Variability of dissolved and particulate trace metals in the Kiel and Mecklenburg Bights of the Baltic Sea 1990–1992. Marine Pollution Bulletin 34: 112–122.

    Article  CAS  Google Scholar 

  • Leskinen, E., C. Alström-Rapaport & P. Pamilo, 2004. Phylogeographical structure, distribution and genetic variation of the green algae Ulva intestinalis and U. compressa (Chlorophyta) in the Baltic Sea area. Molecular Ecology 13: 2257– 2265.

    Article  PubMed  CAS  Google Scholar 

  • Link, W., C. Dixkens, M. Singh, M. Schwall & A. E. Melchinger, 1995. Genetic diversity in European and Mediterranean faba bean germ plasm revealed by RAPD markers. Theoretical and Applied Genetics 90: 27–32.

    Article  CAS  Google Scholar 

  • Mannschreck, B., 2003. Genetische und morphologische Differenzierung ausgewählter Arten der Gattung Chara. Doktorarbeit TU-München. Shaker Verlag, Aachen.

    Google Scholar 

  • Mannschreck, B., T. Fink & A. Melzer, 2002. Biosystematics of selected Chara species (Charophyta) using amplified fragment length polymorphism. Phycologia 41: 657–666.

    Article  Google Scholar 

  • Marin, B. & M. Melkonian, 1999. Mesostigmatophyceae, a new class of streptophyte green algae revealed by SSU rRNA sequence comparisons. Protist 150: 399–417.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, K. A. & M. J. Waterway, 1994. Genetic differentiation between Carex lasiocarpa and C. pellita (Cyperaceae) in North America. American Journal of Botany 81: 224–231.

    Article  Google Scholar 

  • McCourt, R. M., C. F. Delwiche & K. G. Karol, 2004. Charophyte algae and land plant origins. Trends in Ecology & Evolution 19: 661–666.

    Article  Google Scholar 

  • Nesbo, C. L., T. Fossheim, L. A. Vollestad & K. S. Jakobsen, 1999. Genetic divergence and phylogeographic relationships among European perch (Perca fluviatilis) populations reflect glacial refugia and postglacial colonization. Molecular Ecology 8: 1387–1404.

    Article  PubMed  CAS  Google Scholar 

  • Odat, N., G. Jetschke & F. H. Hellwig, 2004. Genetic diversity of Ranunculus acris L. (Ranunculaceae) populations in relation to species diversity and habitat type in grassland communities. Molecular Ecology 13: 1251–1257.

    Article  PubMed  CAS  Google Scholar 

  • Pankow, H., 1990. Ostsee-Algenflora. Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Perkins, S. L., 2000. Species concepts and malaria parasites: detecting a cryptic species of Plasmodium. Proceedings of the Royal Society London B 267: 2345–2350.

    Article  CAS  Google Scholar 

  • Peterson, S. W., 2000. Bio-network news. Diversity 15: 31.

    Google Scholar 

  • Pierce, S. K., L. M. Rowlandfaux & S. M. Obrien, 1992. Different salinity tolerance mechanisms in Atlantic and Chesapeake Bay conspecific oysters – glycine betaine and amino acid pool variations. Marine Biology 113: 107–115.

    Article  CAS  Google Scholar 

  • Ray, S., M. Klenell, K. S. Choo, M. Pedersen & P. Snoeijs, 2003. Carbon acquisition mechanisms in Chara tomentosa. Aquatic Botany 76: 141–154.

    Article  CAS  Google Scholar 

  • Roldan-Ruiz, I., J. Denauw, E. Van Bockstaele, A. Depicker & M. De Loose, 2000. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular Breeding 6: 125–134.

    Article  CAS  Google Scholar 

  • Roy, B. A., D. R. Vogler, T. D. Bruns & T. M. Szaro, 1998. Cryptic species in the Puccinia monoica complex. Mycologia 90: 847–854.

    Article  Google Scholar 

  • Says-Lesage, V., P. Roeckel- Drevet, A. Viguie, J. Tourvieille, P. Nicolas & D. T. Labrouhe, 2002. Molecular variability within Diaporthe/Phomopsis helianthi from France. Phytopathology 92: 308–313.

    Article  PubMed  Google Scholar 

  • Schneider, S., D. Roessli & L. Excoffier, 2000. Arlequin: a software for population genetics data analysis. Version 2000. Genetics and Biometry Lab, Dept. of Anthropology, University of Geneva.

  • Schneider, S., C. Ziegler & A. Melzer, 2006. Growth towards light as adaptation to high light conditions in Chara branches. New Phytologist 172: 83–91.

    Article  PubMed  Google Scholar 

  • Schubert, H. & I. Blindow, 2003. Charophytes of the Baltic Sea. Gantner Verlag, Rugell.

    Google Scholar 

  • Schwarz, G., M. Herz, X. Q. Huang, G. Wenzel, W. Michalek, A. Jahoor & V. Mohler, 2000. Application of fluorescence-based semi-automated AFLP analysis in barley and wheat. Theoretical and Applied Genetics 100: 545–551.

    Article  CAS  Google Scholar 

  • Shaw, A. J., 2001. Biogeographic patterns and cryptic speciation in bryophytes. Journal of Biogeography 28: 253–261.

    Article  Google Scholar 

  • Shepherd, V. A., M. J. Beilby & T. Shimmen, 2002. Mechanosensory ion channels in charophyte cells: the response to touch and salinity stress. European Biophysics Journal 31: 341–355.

    Article  PubMed  CAS  Google Scholar 

  • Taberlet, P., L. Fumagalli, A.-G. Wust-Saucy & J.-F. Cosson, 1998. Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology 7: 453–464.

    Article  PubMed  CAS  Google Scholar 

  • Van de Peer, Y. & R. De Wachter, 1994. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Computer Applications in the Biosciences 10: 569–570.

    PubMed  Google Scholar 

  • Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23: 4407–4414.

    Article  PubMed  CAS  Google Scholar 

  • Winter, U. & G. O. Kirst, 1991. Partial turgor pressure regulation in Chara canescens and its implications for a generalized hypothesis of salinity response in Charophytes. Botanica Acta 104: 37–46.

    CAS  Google Scholar 

  • Winter, U., I. Soulie-Marsche & G. O. Kirst, 1996. Effects of salinity on turgor pressure and fertility in Tolypella (Characeae). Plant Cell and Environment 19: 869–879.

    Article  Google Scholar 

  • Wood, R. D. & K. Imahori, 1965. Monograph of the Characeae. J. Cramer, Weinheim.

    Google Scholar 

  • Yatabe, Y., S. Masuyama, D. Darnaedi & N. Murami, 2001. Molecular systematics of the Asplenium nidus complex from Mt. Halimum National Park, Indonesia: evidence of reproductive isolation among three sympatric rbcL sequence types. American Journal of Botany 88: 1517–1522.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Markus Heinrichs and Irmgard Blindow for correcting the English and for helpful comments on the manuscript. Appreciation is extended to the many colleagues who helped in the charophyte collection. The project was financially supported by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Boegle.

Additional information

Handling editor: C. Sturmbauer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boegle, M.G., Schneider, S., Mannschreck, B. et al. Differentiation of Chara intermedia and C. baltica compared to C. hispida based on morphology and amplified fragment length polymorphism. Hydrobiologia 586, 155–166 (2007). https://doi.org/10.1007/s10750-006-0571-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0571-8

Keywords

Navigation