Skip to main content
Log in

Seasonal dynamics of phytoplankton in the Gulf of Aqaba, Red Sea

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Seawater samples were collected biweekly from the northern Gulf of Aqaba, Red Sea, for Phytoplankton analysis during the period May 1998 to October 1999. Microscopic counts and HPLC methods were employed. Procaryotic and eucaryotic ultraplankton dominated throughout most of the year, with larger nano- and microplankton making up only 5% of the photosynthetic biomass. Moderate seasonal variations in the 0–125 m integrated Chl a contrasted with a pronounced seasonal succession of the major taxonomic groups, reflecting the changes in the density stratification of the water column: Prochlorococcus dominated during the stratified summer period and were almost absent in winter. Chlorophyceae and Cryptophyceae were dominant during winter mixing but scarce or absent during summer. Diatoms and Synechococcus showed sharp and moderate biomass peaks in late winter and spring respectively, but remained at only low Chl a levels for the rest of the year. Chrysophyceae, Prymnesiophyceae and the scarce Dinophyceae showed no clear seasonal distribution pattern. The implications of alternating procaryotic and eucaryote dominated algal communities for the Red Sea pelagic food web are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Najjar, T., 2000. The seasonal dynamics and grazing control of phyto- and mesozooplankton in the northern Gulf of Aqaba. PhD thesis, Bremen University.

  • Al-Najjar, T. H., M. I. Badran & M. Al-Zibdeh, 2003. Seasonal cycle of surface zooplankton biomass in relation to chlorophyll a in the Gulf of Aqaba, Red Sea. Abhath al-Yarmouk, Basic Science and Engineering. 12(1): 109–118.

    Google Scholar 

  • Al-Qutob, M., C. Häse, M. M. Tilzer & B. Lazar, 2002. Phytoplankton drives nitrite dynamics in the Gulf of Aqaba, Red Sea. Marine Ecology Progress Series 239: 233–239.

    Google Scholar 

  • Althuis, I., W. W. C. Gieskes, L. Villerius & F. Colijn, 1994. Interpretation of fluorometric chlorophyll registrations with algal pigment analysis along a ferry transect in the southern North Sea. Netherland Journal Sea Research 33: 37–46.

    Article  Google Scholar 

  • Arar, E. J. & G. B. Collins, 1997. Method 445.0. In vitro determination of chlorophyll a and phaeophytin a in marine and freshwater algae by fluorescence. Revision 1.2. U.S. Environmental Protection Agency, Cincinnati, Ohio. 12 pp.

  • Badran, M. I., 2001. Dissolved Oxygen, Chlorophyll a and Nutrients: Seasonal Cycles in Waters of the Gulf of Aquaba, Red Sea. Aquatic Ecosystem Health and Management. 4: 139–150.

    Article  Google Scholar 

  • Badran, M. I. & P. Foster, 1998. Environmental quality of the Jordanian coastal waters of the Gulf of Aqaba, Red Sea. Aquatic Ecosystem Health and Management 1: 75–89.

    Article  Google Scholar 

  • Banse, K., 1992. Zooplankton: Pivotal role in the control of ocean production. International Council for the Exploration of the Sea, Journal of Marine Science 52: 265–277.

    Google Scholar 

  • Belogorskaya, E. V., 1970. Qualitative and quantitative distribution of phytoplankton in the Red Sea and Gulf of Aden in October-November 1963. Biol Morya (Vladivost)/Marine Biology (Vladivost) 21: 133–152.

    Google Scholar 

  • Bidigare, R. R., J. Marra, T. D. Dickey, R. Iturriaga, K. S. Baker, R. C. Smith & H. Pak, 1990. Evidence for phytoplankton succession and chromatic adaptation in the Sargasso Sea during spring 1985. Marine Ecology Progress Series 60: 113–122.

    Google Scholar 

  • Burkill, P. H., R. J. G. Leakey, N. J. P. Owens & R. F. C. Mantoura, 1993. Synechococcus and its importance to the microbial foodweb of the northwestern Indian Ocean. Deep-Sea Research 40: 773–782.

  • Campbell, L., H. Liu, H. A. Nolla & D. Vaulot, 1997. Annual variability of picoplankton in the subtropical North Pacific Ocean at Station ALOHA. Deep-Sea Research. 44: 167–192.

    Article  CAS  Google Scholar 

  • Campbell, L. & D. Vaulot, 1993. Photosynthetic picoplankton community structure in the Subtropical North Pacific Ocean near Hawaii. Deep-Sea Research 40: 2043–2060.

    Article  Google Scholar 

  • Christaki, U., S. Jacquet, J. R. Dolan, D. Vaulot & F. Rassoulzadegan, 1999. Growth and grazing on Prochlorococcus and Synechococcus by two marine ciliates. Limnology and Oceanography 44: 52–61.

    Google Scholar 

  • DuRand, M. D., R. J. Olson & S. W. Chisholm, 2001. Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea. Deep Sea Research 48: 8–9.

    Google Scholar 

  • Dusenberry, J. A., R. J. Olson & S. W. Chisholm, 2000. Field observations of oceanic mixed layer dynamics and picophytoplankton photoacclimation. Journal of Marine Systems 24: 3–4.

    Article  Google Scholar 

  • Egeland, E. S., W. Eikrem, J. Throndsen, C. Wilhelm, M. Zapata & S. Liaaen-Jensen, 1995. Carotenoids from further prasinophytes. Biochemistry and System Ecology 23: 747–755.

    Article  CAS  Google Scholar 

  • Eppley, R. W., J. N. Rogers & J. J. McCarthy, 1969. Half-saturation constant for uptake of nitrate and ammonia by marine phytoplankton. Limnology and Oceanography 14: 912–920.

    Article  CAS  Google Scholar 

  • Erez, J., J. Silverman & B. Lazar, 2000. Community metabolism of coral reefs in the Red Sea Proc 9th Int. Coral Reef Conference Denpasar, Bali, Indonesia (Abstract).

  • Farstey, V., B. Lazar & A. Genin, 2002. Expansion and homogeneity of the vertical distribution of zooplankton in a very deep mixed layer. Marine Ecology Progress Series 238: 91–100.

    Google Scholar 

  • Fuhrman, J. A., 1999. Marine viruses and their biogeochemical and ecological effects. Nature 399: 541–548.

    Article  PubMed  CAS  Google Scholar 

  • Genin, A., B. Lazar & S. Brenner, 1995. Vertical mixing and coral death in the Red Sea following the eruption of Mount Pinatubo. Nature 377: 507–510.

    Article  CAS  Google Scholar 

  • Gieskes, W. W. C. & G. W. Kraay, 1983. Dominance of Cryptophyceae during the phytoplankton spring bloom in the central North Sea detected by HPLC analysis of pigments. Marine Biology 75: 179–185.

    Article  CAS  Google Scholar 

  • Gieskes, W. W. & G. W. Kraay, 1986. Analysis of phytoplankton pigments by HPLC before, during and after mass occurrence of the microflagellate Corymbellus aureus during the spring bloom in the open northern North Sea in 1983. Marine Biology 92: 45–52.

    Article  CAS  Google Scholar 

  • Gin, K. Y. H., S. W. Chisholm, R. J. Olson, 1999. Seasonal and depth variation in microbial size spectra at the Bermuda Atlantic time series station. Deep Sea Research 46: 1221–1245.

    Article  CAS  Google Scholar 

  • Grossart, H. P. & M. Simon, 2002. Bacterioplankton dynamics in the Gulf of Aqaba and the northern Red Sea in early spring. Marine Ecology Progress Series 239: 263–276.

    Google Scholar 

  • Guillou, L., S. Jacquet, M. J. Chretiennot-Dinet & D. Vaulot, 2001. Grazing impact of two small heterotrophic flagellates on Prochlorococcus and Synechococcus. Aquatic Microbiology Ecology 26: 201–207.

    Google Scholar 

  • Hempel, G. & C. Richter, 2002. The Red Sea Programme: sailing a nutshell of hope in Red Sea waters. Marine Ecology Progress series 239: 231–232.

    Google Scholar 

  • Hooks, C. E., R. R. Bidigare, M. D. Keller, R. R. L. Guillard, 1988. Coccoid eukaryotic marine ultraplankters with four different HPLC pigment signatures. Journal of Phycology 24: 571–580.

    CAS  Google Scholar 

  • Hulings, N. C., 1989. A review of marine science research in the Gulf of Aqaba. Publications of the Marine Science Station Aqaba, Jordan 6: 1–267.

    Google Scholar 

  • Iturriaga, R., B. G. Mitchell, 1986. Chrooccoid cyanobacteria: a significant component in the food web dynamics of the open ocean. Marine Ecology Progress series 28: 291–297.

    Google Scholar 

  • Jeffrey, S. W. & S. W. Wright, 1994. Photosynthetic pigments in the Haptophyceae. In: Green J.C. & B. S. C. Leadbeater (eds). The Haptophyte algae. Systematics Association Special Volume, Vol. 51. Claredon Press, Oxford, UK: 111–132.

  • Kemp, W. M. & W. J. Mitch, 1979. Turbulence and phytoplankton diversity: A general model of the “paradox of plankton”. Ecological Modelling 7: 201–222.

    Article  Google Scholar 

  • Kimor, B., 1971. Some aspects on the vertical distribution of the microplankton in the Gulf of Eilat (Red Sea) Proceedings Journal of Oceanography Assesment 442–444.

  • Kimor, B., 1976. Some aspects of vertical distribution and seasonal succession in the microplankton of the Gulf of Eilat (Red Sea). Rep No 5, H Steinitz Marine Biology Lab, Eilat, Israel.

  • Kimor, B. & B. Golandsky, 1977. Microplankton of the Gulf of Elat: Aspects of seasonal and bahtymetric distribution. Marine Biology 42: 55–67.

    Article  Google Scholar 

  • Kimor, B., N. Gordon & A. Neori, 1992. Symbiotic associations among the microplankton in oligotrophic marine environments, with special reference to the Gulf of Aqaba, Red Sea. Journal of Plankton Research 14: 1217–1231.

    Article  Google Scholar 

  • Klein, B. & A. Sournia, 1987. A daily study of the diatom spring bloom at Roscoff (France) in 1985. 2. Phytoplankton pigment composition studies by HPLC analysis. Marine Ecology Progress series 37: 265–275.

    CAS  Google Scholar 

  • Klinker, J., Z. Reiss, C. Kropach, I. Levanon, H. Harpaz & Y. Shapiro, 1978. Nutrients and biomass distribution in the Gulf of Aqaba (Eilat), Red Sea. Marine Biology 45: 53–64.

    Article  CAS  Google Scholar 

  • Landry, M. R. & D. L. Kirchman, 2002. Microbial community structure and variability in the Tropical Pacific. Deep-Sea Research 14–13: 2669–2693.

    Google Scholar 

  • Levanon-Spanier, I., E. Padan & Z. Reiss, 1979. Primary production in a desert-enclosed sea. The Gulf of Eilat. (Aqaba), Red Sea. Deep-Sea Research 26: 673–685.

    CAS  Google Scholar 

  • Lewis, W. M., 1978. Dynamics and succession of the phytoplankton in a tropical lake: Lake Lanao, Philippines. Journal of Ecology 66: 849–880.

    Article  Google Scholar 

  • Li, W. K. W., T. Zohar, Y. Z. Yacobi & A. M. Wood, 1983a. Ultraphytoplankton in the eastern Mediterranean Sea: towards deriving phytoplankton biomass from flow cytometric measurnments of abundance, fluorescence and high scatter. Marine Ecology Progress Series 102: 79–87.

    Google Scholar 

  • Li, W. K. W., D. V. Subba Rao, W. G. Harrison, L. C. Smith, J. J. Cullen, B. Irwin & T. Platt, 1983b. Autotrophic picoplankton in the tropical ocean. Science 219: 292–295.

    Article  CAS  Google Scholar 

  • Lindell D. & A. F. Post, 1995. Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnology and Oceanography 40: 1130–1141.

    Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. LeCren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Google Scholar 

  • Mackey, M. D., H. W. Higgins, D. J. Mackey & S. W. Wright, 1997. CHEMTAX user’s manual: A program for estimating class abundances from chemical markers - application to HPLC measurements of phytoplankton pigments. Report CSIRO Marine Lab 229: 1–41.

    Google Scholar 

  • Mackey, M. D., D. J. Mackey, H. W. Higgins & S. W. Wright, 1996. CHEMTAX - a program for estimating class abundances from chemical markers: Application to HPLC measurements of phytoplankton. Marine Ecology Progress series 144: 265–283.

    CAS  Google Scholar 

  • Manasrah, R., M. I. Badran, H. U. Lass & W. Fennel, 2004. Circulation and deep-water formation during spring in the northern Red Sea and the Gulf of Aqaba. Oceanologia 46(1): 1–19.

    Google Scholar 

  • Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1: 496–510.

    Google Scholar 

  • Moore, L. R., A. F. Post, G. Rocap & S. W. Chisholm, 2002. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnology and Oceanography 47: 989–996.

    CAS  Google Scholar 

  • Moore, L. R., G. Rocap & S. W. Chisholm, 1998. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393: 464–467.

    Article  PubMed  CAS  Google Scholar 

  • Morcos, S. A., 1970. Physical and chemical oceanography of the Red Sea. Oceanography and Marine Biology An Annual Review 8: 73–202.

    Google Scholar 

  • Moutin, T., and others, 2002. Does competition for nanomolar phosphate supply explain the predominance of the cyanobacterium Synechococcus? Limnology and Oceanography 47: 1562–1567.

    Google Scholar 

  • Niemann, H., C. Richter, H. M. Jonkers & M. I. Badran, 2004. Red Sea gravity currents cascade near reef phytoplankton to the twilight zone. Marine Ecology. Progress Series. 269: 91–99.

    Google Scholar 

  • Olson, R. J., S. W. Chisholm, E. R. Zettler, M. A. Altabet & J. A. Dusenberry, 1990. Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean. Deep-Sea Research 37: 1033–1051.

    Article  Google Scholar 

  • Plähn, O., B. Baschek, T. H. Badewien, M. Walter & M. Rhein, 2002. Importance of the Gulf of Aqaba for the formation of bottom water in the Red Sea. Journal of Geophysical Research (C Oceans) 107: 1–18.

    Google Scholar 

  • Platt, T., D. V. S. Rao & B. Irwin, 1983. Photosynthesis of picoplankton in the oligotrophic ocean. Nature 301: 702–704.

    Article  CAS  Google Scholar 

  • Post, A. F., Z. Dedej, R. Gottlieb, H. Li, D. N. Thomas, M. El-Absawi, A. El-Naggar, M. El-Gharabawi & U. Sommer, 2002. Spatial and temporal distribution of Trichodesmium spp. in the stratified Gulf of Aqaba, Red Sea. Marine Ecology Progress Series 239:241–250 and interannual variability.Progress in Oceanography 46: 187–204.

    Google Scholar 

  • Rasheed M., M. I. Badran, C. Richter, M. Huettel, 2002. Effects of reef framework and bottom sediment on nutrient enríchment in a coral reef of the Gulf of Aqaba, Red Sea. Marine Ecology Progress series 239: 277–285.

    Google Scholar 

  • Raven J. A., 1986. Physiological consequences of extremely small size for autotrophic organisms in the sea. Canadian Bulletin Fisharies and Aquatic Sciences 214: 1–70.

    Google Scholar 

  • Reiss, Z. & L. Hottinger, 1984. The Gulf of Aqaba (Eilat) - Ecological Micropaleontology. Springer, Berlin, p. 357.

    Google Scholar 

  • Sakka, A., L. Legendre, M. Gosselin & B. Delesalle, 2000. Structure of the oligotrophic planktonic food web under low grazing of heterotrophic bacteria: Takapoto Atoll, French Polynesia. Marine Ecology Progress series 197: 1–17.

    Google Scholar 

  • Smayda, T. J., 1980. Phytoplankton species succession. In: Morris I (eds) The Physiological Ecology of Phytoplankton. Blackwell, Malden (MA), USA, pp. 493–570.

    Google Scholar 

  • Sommer, U., 2000. Scarcity of medium-sized phytoplankton in the Red Sea explained by strong bottom-up and weak top-down control. Marine Ecology Progress series 197: 19–25.

    Google Scholar 

  • Sommer, U., U. G. Berninger, R. Böttger-Schnack, A. Cornils, W. Hagen, T. Hansen, T. Al-Najjar, A.F. Post, S. B. Schnack-Schiel, H. Stibor, D. Stübing & S. Wickham, 2002. Grazing during early spring in the Gulf of Aqaba and the northern Red Sea. Marine Ecology Progress series 239:251–261.

    Google Scholar 

  • Strickland, J. & T. R. Parsons, 1972. A Practical Handbook of Seawater Analyses. 2nd ed. Bulletin of Fisheries Research Board of Canada 167: 1–310.

  • Tanaka, T., F. Rassoulzadegan & T. F. Thingstad, 2003. Measurements of phosphate affinity constants and phosphorus release rates from the microbial food web in Villefranche Bay. Limnology and Oceanography. 48: 1150–1160.

    CAS  Google Scholar 

  • Tangen, K. & T. Björnland, 1981. Observations on pigments and morphology of Gyrodinium aureolum Hulburt, a marine dinoflagellate containing 19-hexanoiloxyfucoxanthin as the main carotenoid. Journal of Plankton Research 3: 389–401.

    Article  CAS  Google Scholar 

  • Tester, P.A, M.E Geesey, C Guo, H.W Pearl & D.F Millie, (1995) Evaluating phytoplankton dynamics in the Newport River estuary (North Carolina, USA) by HPLC-derived pigment proliles. Marine Ecology Progress series. 124: 237–245.

    Google Scholar 

  • UNESCO, 1981. International oceanographic tables. Report No. 36, UNESCO, Paris.

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt International Vereinig Limnology 9: 1–38.

    Google Scholar 

  • Venrick, E. L., 1993. Phytoplankton seasonality in the Central North Pacific: The endless summer reconsidered. Limnology and Oceanography 38: 1135–1149.

    CAS  Google Scholar 

  • Wahbah, M. I. & M. B. Zughul, 2001. Temporal distribution of chlorophyll a, suspended matter, and the vertical flux of particles in Aqaba (Jordan). Hydrobiologia 459: 1–3.

    Article  Google Scholar 

  • Wilhelm, C, I Rudolph & W Renner, 1991. A quantitative method based on HPLC-aided pigment analysis to monitor structure and dynamics of the phytoplankton assemblage- a study from lake Meerfelder Maar (Eifel, Germany). Arch. Hydrobiologia. 123: 21–35.

    CAS  Google Scholar 

  • Winter, A., Z. Reiss & B. Luz, 1976. Distribution of living coccolithophore assemblages in the Gulf of Elat (Aqaba). Marine Micropaleontology 4: 197–223.

    Article  Google Scholar 

  • Woelk, S. & D. Quadfasel, 1996. Renewal of deep water in the Red Sea during 1982–1987. Journal of Geophysical Research 101, 18,155–18,165.

    Google Scholar 

  • Wright, S. W., S. W. Jeffrey, R. F. C. Mantoura, C. A. Llewellyn, T. Bjoernland, D. Repeta & N. Welschmeyer, 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Marine Ecology Progress series 77: 183–196.

    Google Scholar 

  • Wright, S. W., D. P. Thomas, H. J. Marchant, H. W. Higgins, M. D. Mackey & D. J. Mackey, 1996. Analysis of phytoplankton of the Australian sector of the Southern Ocean: Comparisons of microscopy and size frequency data with interpretations of pigment HPLC data using the ‘CHEMTAX’ matrix factorisation program. Marine Ecology Progress series 144: 285–298.

    CAS  Google Scholar 

  • Yahel, G., A. F. Post & K. Fabricius, D. Marie, D. Vaulot & A. Genin, 1998. Phytoplankton distribution and grazing near coral reefs. Limnology and Oceanography 43: 551–563.

    Google Scholar 

  • Yahel, G., J. H. Sharp, D. Marie, C. Häse & A. Genin, 2003. In situ feeding and element removal in the symbiont bearing sponge Theonella swinhoei: Bulk DOC is the major source for carbon. Limnology and Oceanography 48: 141–149.

    Article  Google Scholar 

  • Zimmer, C., 2001. The partitioning of the Red Sea. Science 293: 627–628.

    Article  PubMed  CAS  Google Scholar 

  • Zohary, T. & R. D. Robarts, 1998. Experimental study of microbial P limitation in the eastern Medditeranean. Limnology and oceanography 43: 387–395.

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the efforts of the Aqaba Marine Science Station, the Institute für Meereskunde, Kiel and the Center for Marine Tropical Ecology, Bremen in supporting this work. Thanks are due to Gotthilf Hempel for valuable comments, support and advice and to Thomas Hansen and Kerstin Nachtigall for technical support. Our work forms part of the Red Sea Program (RSP) funded by the German Ministry of Education and Science (grant nos. 03F0151A, 03F0245A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Al-Najjar.

Electronic supplementary material

Below are the electronic supplementary materials.

ESM 1 (PDF 360 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Najjar, T., Badran, M.I., Richter, C. et al. Seasonal dynamics of phytoplankton in the Gulf of Aqaba, Red Sea. Hydrobiologia 579, 69–83 (2007). https://doi.org/10.1007/s10750-006-0365-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0365-z

Keywords

Navigation