Skip to main content
Log in

Dynamics of the benthic boundary layer in a strongly forced stratified lake

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Field data and the three-dimensional (3D) Estuary and Lake Computer Model (ELCOM) were used to investigate the impact of periodic forcing on the structure and dynamics of the benthic boundary layer (BBL) in Lake Kinneret, Israel, a large lake that experiences strong thermal stratification and wind forcing events. Microstructure data were used to derive the thickness of the BBL and to describe the mean turbulent properties within the BBL. Time series temperature data from thermistor chains were used to characterize the thermal structure of the lake and the basin-scale internal wave field in the lake that was shown to force the turbulent field in the BBL. A clear connection between the dynamics of the BBL and the large-scale features of the flow is presented. The time history of the thickness of the BBL, the mixing in the BBL and the resulting cross-shore flux were shown to vary with the phase of the basin-scale internal wave field. Detailed comparison of simulation results with field data revealed that the model captured well the lake hydrodynamics and the spatial and temporal evolution of energetics of the BBL. Together, field data and numerical modelling provided a clear characterization of the dynamics of the turbulent BBL and its central role in setting up a boundary layer mass flux up the slope from the lake bottom to the height of the metalimnion. Both the turbulent environment in the BBL and the mass flux are of great importance for the ecological processessing of material in a lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antenucci J. P. and Imberger J. (2003). The evolution of wind/internal resonance in Lake Kinneret. Limnology and Oceanography 48: 2055–2061

    Article  Google Scholar 

  • Antenucci J. P., Imberger J. and Saggio A. (2000). Seasonal evolution of the basin-scale internal wave field in a large stratified lake. Limnology and Oceanography 45: 1621–1638

    Google Scholar 

  • Armi L. and Millard R. C. J. (1976). The bottom boundary layer of the deep ocean. Journal of Geophysical Research 81: 4983–4990

    Article  Google Scholar 

  • Baccini P. (1985). Phosphate interactions at the sediment – water interface. In: Stumm, W. (eds) Chemical Processes in Lakes, pp 189–205. Wiley-Interscience, New York

    Google Scholar 

  • Beaulieu S. and Baldwin R. (1998). Temporal variability in currents and the benthic boundary layer at an abyssal station off central California. Deep-Sea Research II 45: 587–615

    Article  Google Scholar 

  • Boegman L., Imberger J., Ivey G. N. and Antenucci J. P. (2003). High-frequency internal waves in large stratified lakes. Limnology and Oceanography 42: 895–919

    Article  Google Scholar 

  • Boetius A., Scheibe S., Tselepides A. and Thiel H. (1996). Microbial biomass and activities in deep-sea sediments of the Eastern Mediterranean: trenches are benthic hotspots. Deep-Sea Research 43: 1439–1460

    CAS  Google Scholar 

  • Boudreau, B. P. & B. B. Jørgensen, 2001. The Benthic Boundary Layer: Transport Processes and Biogeochemistry. Oxford University Press

  • Bowden K. F. (1978). Physical problem of the benthic boundary layer. Geophysical Surveys 3: 255–296

    Article  Google Scholar 

  • Casulli V. and Cheng R. T. (1992). Semi-implicit finite difference methods for three-dimensional shallow water flow. International Journal of Numerical Methods in Fluids 15: 629–648

    Article  Google Scholar 

  • Fozdar F. M., Parker G. J. and Imberger J. (1985). Matching temperature and conductivity response characteristics. Journal of Physical Oceanography 15: 1557–1569

    Article  Google Scholar 

  • Fréchette M., Butman C. A. and Geyer W. R. (1989). The importance of boundary-layer flows in supplying phytoplankton to the benthic suspension feeder, Mytilus edulis L. Limnology and Oceanography 34: 19–36

    Google Scholar 

  • Garret C. (1990). The role of the secondary circulation in boundary mixing. Journal of Geophysical Research 95: 3181–3188

    Google Scholar 

  • Gloor M., Wüest A. and Imboden D. M. (2000). Dynamics of mixed bottom boundary layers and its implications for diapycnal transport in a stratified, natural water basin. Journal of Geophysical Research 105: 8629–8646

    Article  Google Scholar 

  • Gloor M., Wüest A. and Münnich M. (1994). Benthic boundary mixing and resuspension induced by internal seiches. Hydrobiologia 284: 59–68

    Article  Google Scholar 

  • Goudsmit G. H., Peeters F., Gloor M. and Wüest A. (1997). Boundary versus internal diapycnal mixing in stratified natural waters. Journal of Geophysical Research 102: 27903–27914

    Article  Google Scholar 

  • Grant W. D. and Madsen O. S. (1986). The continental shelf boundary layer. Annual Review of Fluid Mechanics 18: 265–305

    Article  Google Scholar 

  • Hendricks P. J. and Rodenbusch G. (1981). Interpretation of velocity profiles measured by freely sinking probes. Deep-Sea Research 28A: 1199–1213

    Article  Google Scholar 

  • Hodges B. R., Imberger J., Saggio A. and Winters K. (2000). Modeling basin-scale internal waves in a stratified lake. Limnology and Oceanography 45: 1603–1620

    Article  Google Scholar 

  • Hondzo, M. & Z. Haider, 2004. Boundary mixing in a small stratified lake. Water Resources Research, 40, W03101, doi:10.1029/2002/WR001851

  • Houghton R. W. (1995). The bottom boundary layer structure in the vicinity of the Middle Atlantic Bight shelfbreak front. Continental Shelf Research 15: 1173–1194

    Article  Google Scholar 

  • Huettel M., Røy H., Precht E. and Ehrenhauss S. (2003). Hydrodynamical impact on biogeochemical processes in aquatic sediments. Hydrobiologia 494: 231–236

    Article  CAS  Google Scholar 

  • Imberger J. (1974). Natural convection in a shallow cavity with differentially heated end walls. Part 3. Experimental results. Journal of Fluid Mechanics 65: 247–260

    Article  Google Scholar 

  • Imberger, J., 1998. Flux paths in a stratified lake: a review. In Imberger, J. (ed.), Physical Processes in Lakes and Oceans. American Geophysical Union, 1–17

  • Imberger, J. & R. Head, 1994. Measurement of turbulent properties in a natural system. In Fundamental and Advancements in Hydraulic Measurements and Experimentation. Hydraulics Division, ASCE

  • Imberger J. and Ivey G. N. (1991). On the nature of turbulence in a stratified fluid. Part II: Application to lakes. Journal of Physical Oceanography 21: 659–680

    Article  Google Scholar 

  • Imberger J. and Ivey G. N. (1993). Boundary mixing in stratified reservoirs. Journal of Fluid Mechanics 248: 477–491

    Article  Google Scholar 

  • Ivey G. N. (1987). Boundary mixing in a rotating, stratified fluid. Journal of Fluid Mechanics 183: 25–44

    Article  Google Scholar 

  • Ivey G. N. and Corcos G. M. (1982). Boundary mixing in a stratified fluid. Journal of Fluid Mechanics 121: 1–26

    Article  Google Scholar 

  • Laval B., Imberger J., Hodges B. R. and Stocker R. (2003). Modeling circulation in lakes: spatial and temporal variations. Limnology and Oceanography 48: 983–994

    Article  Google Scholar 

  • LeBlond, P. H. & L. A. Mysak, 1978. Waves in the Ocean. Elsevier

  • Lemckert C. J., Antenucci J. P., Saggio A. and Imberger J. (2004). Physical properties of turbulent benthic boundary layers generated by internal waves. Journal of Hydraulic Engineering ASCE 130: 58–69

    Article  Google Scholar 

  • Lemmin U. (1987). The structure and dynamics of internal waves in Lake Baldeggersee. Limnology and Oceanography 32: 43–61

    Article  Google Scholar 

  • Lentz S. J. and Trowbridge J. H. (1991). The bottom boundary layer over the northern Californian shelf. Journal of Physical Oceanography 21: 1186–1201

    Article  Google Scholar 

  • Leonard B. P. (1991). The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Computer Methods in Applied Mechanics and Engineering 88: 17–74

    Article  Google Scholar 

  • Lorke A., Umlauf L., Jonas T. and Wüest A. (2002). Dynamics of turbulence in low-speed oscillating bottom boundary layers of stratified basins. Environmental Fluid Mechanics 2: 291–313

    Article  Google Scholar 

  • Luketina D. A. and Imberger J. (2001). Determining turbulent kinetic energy dissipation from Batchelor curve fitting. Journal of Atmospheric and Oceanic Technology 18: 100–113

    Article  Google Scholar 

  • MacIntyre S. M., Flynn K., Jellison R. and Romero J. R. (1999). Boundary mixing and nutrient fluxes in Mono Lake, California. Limnology and Oceanography 44: 512–529

    CAS  Google Scholar 

  • Marti, C. L., 2004. The exchange processes between littoral and pelagic waters in a stratified lake. PhD thesis. The University of Western Australia

  • McPhee-Shaw E. E. and Kunze E. (2002). Boundary layer intrusions from a sloping bottom: a mechanism for generating intermediate nepheloid layers. Journal of Geophysical Research 107: 1–16

    Article  Google Scholar 

  • Munk W. H. (1966). Abyssal recipes. Deep-Sea Research 13: 707–730

    Google Scholar 

  • Nishri A., Imberger J., Eckert W., Ostrovsky I. and Geifman J. (2000). The physical regime and the respective biogeochemical processes in lower water mass of Lake Kinneret. Limnology and Oceanography 45: 972–981

    CAS  Google Scholar 

  • Peeters F., Piepke G. and Gloor M. (1997). A diffusion model for the development of a boundary layer in lakes. Aquatic Sciences 59: 95–114

    Article  Google Scholar 

  • Pierson D. C. and Weyhenmeyer G. A. (1994). High resolution measurements of sediment resuspension above an accumulation bottom in a stratified lake. Hydrobiologia 284: 43–57

    Article  Google Scholar 

  • Poremba K. and Hoppe H. G. (1995). Spatial variation of benthic microbial production and hydrolytic enzymatic activity down the continental slope of the Celtic Sea. Marine Ecology Progress Series 118: 237–245

    Google Scholar 

  • Ravens T. M., Kocsis O., Granin N. and Wüest A. (2000). Small-scale turbulence and vertical mixing in Lake Baikal. Limnology and Oceanography 45: 159–173

    Google Scholar 

  • Richards K. J. (1990). Physical processes in the benthic boundary layer. Philosophical Transactions of Royal Society of London A 331: 3–13

    Google Scholar 

  • Saggio A. and Imberger J. (2001). Mixing and turbulent fluxes in the metalimnion of a stratified lake. Limnology and Oceanography 46: 392–409

    Article  Google Scholar 

  • Serruya S. (1975). Wind, water, temperature and motions in Lake Kinneret: general patterns. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 19: 73–87

    Google Scholar 

  • Sherman F. S., Imberger J. and Corcos G. M. (1978). Turbulence and mixing in stably stratified estuaries. Annual Review of Fluid Mechanics 10: 267–288

    Article  Google Scholar 

  • Shimeta J., Starczak V. R., Ashiru O. M. and Zimmer C. A. (2001). Influences of benthic boundary-layer flow on feeding rates of ciliates and flagellates at the sediment-water interface. Limnology and Oceanography 46: 1709–1719

    Article  Google Scholar 

  • Shteinman B., Eckert W., Kaganowsky S. and Zohary T. (1997). Seiche-induced resuspension in Lake Kinneret: a fluorescent tracer experiment. Water, Air, & Soil Pollution 99: 123–131

    Article  CAS  Google Scholar 

  • Simanjuntak, M. A., J. Imberger, K. Nakayama & T. Ishikawa, 2006. Boundary and interfacial mixing in a shallow salt-wedge estuary. Journal of Hydraulic Engineering, ASCE, submitted for publication

  • Spigel R. H., Imberger J. and Rayner K. N. (1986). Modelling the diurnal mixed layer. Limnology and Oceanography 31: 533–556

    Google Scholar 

  • Stips A., Prandke H. and Neumann T. (1998). The structure and dynamics of the bottom boundary layer in shallow sea areas without tidal influence: an experimental approach. Progress in Oceanography 41: 383–453

    Article  Google Scholar 

  • Thorpe S. A. (1977). Turbulence and mixing in a Scottish Loch. Philosophical Transactions of Royal Society of London A 286: 125–181

    Google Scholar 

  • Thorpe S. A. (1988). The dynamics of the boundary layers of the deep ocean. Science Progress, Oxford 72: 189–206

    Google Scholar 

  • Thorpe, S. A., 1998. Some dynamical effects of internal waves and the sloping sides of lakes. In Imberger, J. (ed.), Physical Processes in Lakes and Oceans, American Geophysical Union: 441–460

  • Thorpe S. A. and Jiang R. (1998). Estimating internal waves and diapycnal mixing from convectional mooring data in a lake. Limnology and Oceanography 43: 936–945

    Google Scholar 

  • Thorpe S. A., Keen J. M., Jiang R. and Lemmin U. (1996). High-frequency internal waves in Lake Genova. Philosophical Transactions of Royal Society of London A 354: 237–257

    Google Scholar 

  • Turnewitsch R. and Graf G. (2003). Variability of particulate seawater properties related to bottom mixed layer-associated internal waves in shallow water on a time scale of hours. Limnology and Oceanography 48: 1254–1264

    Article  Google Scholar 

  • Turnewitsch R. and Springer B. M. (2001). Do bottom mixed layers influence 234Th dynamics in the abyssal near-bottom water column?. Deep-Sea Research I 48: 1279–1307

    Article  CAS  Google Scholar 

  • Oakey N. and Garret C. (1994). Measurements of internal wave band eddy fluxes above a sloping bottom. Journal of Marine Research 52: 909–946

    Article  Google Scholar 

  • Wüest, A. & M. Gloor, 1998. Bottom boundary mixing: the role of near-sediment density stratification. In Imberger, J. (ed.), Physical processes in lakes and oceans. American Geophysical Union, 485–502

  • Wüest A. and Lorke A. (2003). Small-scale hydrodynamics in lakes. Annual Review of Fluid Mechanics 35: 373–412

    Article  Google Scholar 

  • Wüest A., D. C. Van Senden, Imberger J., Piepke G. and Gloor M. (1996). Comparison of diapycnal diffusivity measured by tracer and microstructure techniques. Dynamics of Atmospheres and Oceans 24: 27–39

    Article  Google Scholar 

  • Yeates P. S. and Imberger J. (2004). Pseudo two-dimensional simulations of internal and boundary fluxes in stratified lakes and reservoirs. The International Journal of River Basin Management 4: 1–23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clelia Luisa Marti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marti, C.L., Imberger, J. Dynamics of the benthic boundary layer in a strongly forced stratified lake. Hydrobiologia 568, 217–233 (2006). https://doi.org/10.1007/s10750-006-0111-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0111-6

Keywords

Navigation