Skip to main content
Log in

Using instrumental variables to estimate a Cox’s proportional hazards regression subject to additive confounding

  • Published:
Health Services and Outcomes Research Methodology Aims and scope Submit manuscript

Abstract

The estimation of treatment effects is one of the primary goals of statistics in medicine. Estimation based on observational studies is subject to confounding. Statistical methods for controlling bias due to confounding include regression adjustment, propensity scores and inverse probability weighted estimators. These methods require that all confounders are recorded in the data. The method of instrumental variables (IVs) can eliminate bias in observational studies even in the absence of information on confounders. We propose a method for integrating IVs within the framework of Cox’s proportional hazards model and demonstrate the conditions under which it recovers the causal effect of treatment. The methodology is based on the approximate orthogonality of an instrument with unobserved confounders among those at risk. We derive an estimator as the solution to an estimating equation that resembles the score equation of the partial likelihood in much the same way as the traditional IV estimator resembles the normal equations. To justify this IV estimator for a Cox model we perform simulations to evaluate its operating characteristics. Finally, we apply the estimator to an observational study of the effect of coronary catheterization on survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baker, S.: Analysis of survival data from a randomized trial with all-or-none compliance: estimating the cost-effectiveness of a cancer screening program. J. Am. Stat. Assoc. 93, 929–934 (1998)

    Article  Google Scholar 

  • Bijwaard, G.E.: IV Estimation for Duration Data. Tinbergen Institute Discussion Paper TI 2008–032/4. Tinbergen Institute, Amsterdam (2008)

    Google Scholar 

  • Bijwaard, Govert E., Ridder, Geert: Correcting for selective compliance in a re-employment bonus experiment. J. Econom. 125(1–2), 77–111 (2005)

    Article  Google Scholar 

  • Brannas, K.: Estimation in a duration model for evaluating educational programs. IZA Discussion Papers, Institute for the Study of Labor (2001)

  • Buckley, J., James, I.: Linear regression with censored data. Biometrika 66, 429–436 (1979)

    Article  Google Scholar 

  • Buzas, J.S., Stefanski, L.A.: IV estimation in generalized linear measurement error models. J. Am. Stat. Assoc. 91, 999–1006 (1996)

    Article  Google Scholar 

  • Buzas, J., Stefanski, L., Tosteson, T.: Measurement Error. In: Ahrens, W., Pigeot, I. (eds.) Handbook of Epidemiology, pp 729–765. Springer-Verlag, Berlin (2005)

  • Carslake, D., Fraser, A., et al.: Associations of mortality with own height using son’s height as an IV. Econ. Human Biol. 11(3), 351–359 (2013)

    Article  Google Scholar 

  • Cole, S.R., Platt, R.W., Schisterman, E.F., Chu, H., Westreich, D., Richardson, D., Poole, C.: Illustrating bias due to conditioning on a collider. Int. J. Epidemiol. 39(2), 417–420 (2010)

    Article  PubMed Central  PubMed  Google Scholar 

  • Cox, D.R.: Regression models and life-tables. J. R Stat. Soc. Ser. B 34(2), 187–220 (1972)

    Google Scholar 

  • Curtis, L.H., Hammill, B.G., Eisenstein, E.L., Kramer, J.M., Anstrom, K.J.: Using inverse probability-weighted estimators in comparative effectiveness analyses with observational databases. Med. Care 45(10), S96–S102 (2007)

    Google Scholar 

  • Foster, E.M.: IVs for logistic regression: an illustration. Soc. Sci. Res. 26, 287–504 (1997)

    Article  Google Scholar 

  • Greenland, S.: An introduction to IVs for epidemiologists. Int. J. Epidemiol. 29(4), 722–729 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Hernan, M.A., Hernandez-Diaz, S., Robins, J.M.: A structural approach to selection bias. Epidemiology 15, 615–625 (2004)

    Article  PubMed  Google Scholar 

  • Hernan, M.A., Robins, J.M.: An epidemiologist’s dream. Epidemiology 17, 360–372 (2006)

    Article  PubMed  Google Scholar 

  • Hirano, K., Imbens, G.W.: Estimation of causal effects using propensity score weighting: an application to data on right heart catherization. Health Serv. Outcomes Res. Methodol. 2, 259–278 (2001)

    Article  Google Scholar 

  • Huang, Y., Wang, C.Y.: Cox regression with accurate covariates unascertainable: a nonparametric-correction approach. J. Am. Stat. Assoc. 95(452), 1213–1219 (2000)

    Article  Google Scholar 

  • Johnston, K., Gustafson, P., Levy, A.R., Grootendorst, P.: Use of IVs in the analysis of generalized linear models in the presence of omitted confounding with applications to epidemiological research. Stat. Med. 27, 1539–1556 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Landrum, M.B., Ayanian, J.Z.: Causal effect of ambulatory specialty care on mortality following myocardial infarction: a comparison of propensity score and iv analyses. Health Serv. Outcomes Res. Methodol. 2, 221–245 (2001)

    Article  Google Scholar 

  • Newhouse, J.P., McClellan, M.: Econometrics in outcomes research: the use of IVs. Annu. Rev. Public Health 19, 17–34 (1998)

    Article  CAS  PubMed  Google Scholar 

  • McClellan, M., McNeil, B.J., Newhouse, J.P.: Does more intensive treatment of acute myocardial infarction in the elderly reduce mortality? Analysis using instrumental variables. JAMA 272, 859–866 (1994)

    Article  CAS  PubMed  Google Scholar 

  • Rassen, J.A., Schneeweiss, S., Glynn, R.J., Mittleman, M.A., Brookhart, M.A.: IV analysis for estimation of treatment effects with dichotomous outcomes. Am. J. Epidemiol. 169(3), 273–284 (2009)

    Article  PubMed  Google Scholar 

  • Robins, J.M., Tsiatis, A.A.: Correcting for non-compliance in randomized trials using rank preserving structural failure time models. Commun. Stat. Theory Methods 20(8), 2609–2631 (1991)

    Article  Google Scholar 

  • Staiger, D., Stock, J.H.: Instrumental variables regression with weak instruments. Econometrica 65(3), 557–586 (1997)

    Article  Google Scholar 

  • Stukel, T.A., Fisher, E.S., Wennberg, D.E., Alter, D.A., Gottlieb, D.J., Vermeulen, M.J.: Analysis of observational studies in the presence of treatment selection bias: effects of invasive cardiac management on AMI survival using propensity score and IV methods. J. Am. Med. Assoc. 297(3), 278–285 (2007)

    Article  CAS  Google Scholar 

  • Suissa, S.: Immortal time bias in pharmacoepidemiology. Am. J. Epidemiol. 167(4), 492–499 (2008)

    Article  PubMed  Google Scholar 

  • Tan, Z.: Marginal and nested structural models using IVs. JASA 105(489), 156–169 (2010)

    Google Scholar 

  • Thanassoulis, G., O’Donnell, C.J.: Mendelian randomization. J. Am. Med. Assoc. 301(22), 2386–2388 (2009)

    Article  CAS  Google Scholar 

  • Vansteelandt, S., Bowden, J., Babanezhad, M., Goetghebeur, E.: On IVs estimation of causal odds ratios. Stat. Sci. 26(3), 403–422 (2011)

    Article  Google Scholar 

  • Wooldridge, J.M.: Econometic analysis of cross section and panel data. The MIT Press, Cambridge (2002)

    Google Scholar 

Download references

Acknowledgments

A. James O’Malley’s research that contributed to this paper was supported by NIH Grant 1RC4MH092717-01. The authors have no conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd A. MacKenzie.

Appendices

Appendix 1: The marginal is Cox proportional hazards model

Here we show that if the treatment \(X\) is applied independently of \(U\) in model (1) that the marginal distribution of the time-to-event with respect to \(X\) is proportional hazards. This is relevant because it shows that parameter \(\beta\) of that model has an intepretation as the logarithm of the hazard ratio comparing the potential outcome if a subject recieves \(X=1\) to the potential outcome if a subject recieves \(X=0\) and \(U\) is unknown (i.e. not conditioned on).

The survival curve corresponding to model (1), \(S(t;x|U)={\mathrm{Pr}}[\widetilde{T}(x)\ge t|U]\) is

$$\begin{aligned} \exp \left[ -\int \limits _0^t \bigl \{ \lambda _{01}(t)\exp (\beta ^{\prime }x)+ h(u,t) \}dt \right] = \exp \left[ -\Lambda _{01}(t)\exp (\beta ^{\prime }x)\right] \exp \left[ -H(u,t) \right] \nonumber \end{aligned}$$

where \(H(u,t)=\int _0^t h(u,t^{\prime })dt^{\prime }\). If \(X\) is applied independently of \(U\) then the marginal causal model for the survival curve, obtained by integrating over \(U\) equals

$$\begin{aligned} S(t;x)&= \int S(t;x|u) dF_U = \int \exp \biggl [-\Lambda _{01}(t)\exp (\beta ^{\prime }x)\biggr ] \exp \biggl [-H(u,t) \biggr ] dF_U(u) \nonumber \\&= \exp \biggl [-\Lambda _{01}(t)\exp (\beta ^{\prime }x)\biggr ] \int \exp \biggl [-H(u,t) \biggr ] dF_U(u). \end{aligned}$$
(7)

Suppose \(H(u,t)=A(t)u + B(t)\). Then (7) becomes

$$\begin{aligned} S(t;x)&= \exp \biggl [-\Lambda _{01}(t)\exp (\beta ^{\prime }x)\biggr ] \exp \biggl [-B(t) \biggr ] \int \exp \biggl [-A(t)u \biggr ] dF_U(u) \end{aligned}$$
(8)
$$\begin{aligned}&= \exp \biggl [-\Lambda _{01}(t)\exp (\beta ^{\prime }x)\biggr ] \exp \biggl [-B(t) \biggr ] {\mathrm{mgf}}_U[-A(t)]. \end{aligned}$$
(9)

Therefore if we take \(B(t)=\ln {\mathrm{mgf}}_U[-A(t)]\) the marginal causal survival curve is \(S(t;x)=\exp \biggl [-\Lambda _{01}(t)\exp (\beta ^{\prime }x)\biggr ]\) which is a Cox proportional hazards model.

This particular causal conditional model has the property that E\([h(u,t)|\widetilde{T}(x) \ge t]\) equals zero as demonstrated below:

$$\begin{aligned} {\mathrm{E}}[h(U,t)|\widetilde{T}(x) \ge t]&= \int h(u,t) d{\mathrm{Pr}}[U \le u| \widetilde{T}(x) \ge t] \nonumber \\&= \int h(u,t) {\mathrm{Pr}}[\widetilde{T}(x) \ge t|U=u]\,dF_U(u) / S(t;x) \nonumber \\&= \int h(u,t) \exp [-\exp (\beta ^{\prime }x)\Lambda _0(t) -H(u,t)]\,dF_U(u) / S(t;x) \nonumber \\&= \exp [-\exp (\beta ^{\prime }x)\Lambda _0(t)] \int h(u,t) \exp [-H(u,t)]\,dF_U(u) / S(t;x) \nonumber \\&= S(t;x) \int h(u,t) \exp [-H(u,t)]\,dF_U(u) / S(t;x) \nonumber \\&= \frac{d}{dt}\biggl \{ -\int \exp [-A(t)u-B(t)]\,dF_U(u) \biggr \} \nonumber \\&= -\frac{d}{dt}\biggl \{\exp [-B(t)] {\mathrm{mgf}}_U(-A(t)) \biggr \} \nonumber \\&= 0, \end{aligned}$$
(10)

when \(B(t)=\ln {\mathrm{mgf}}_U[-A(t)]\).

Appendix 2: R code for implementing the estimating equation

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacKenzie, T.A., Tosteson, T.D., Morden, N.E. et al. Using instrumental variables to estimate a Cox’s proportional hazards regression subject to additive confounding. Health Serv Outcomes Res Method 14, 54–68 (2014). https://doi.org/10.1007/s10742-014-0117-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10742-014-0117-x

Keywords

Navigation