Skip to main content

Advertisement

Log in

The role of cardiac magnetic resonance imaging in the detection and monitoring of cardiotoxicity in patients with breast cancer after treatment: a comprehensive review

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The use of chemotherapy medicines for breast cancer (BC) has been associated with an increased risk of cardiotoxicity. In recent years, there have been growing interests regarding the application of cardiovascular magnetic resonance (CMR) imaging, a safe and noninvasive modality, with the potential to identify subtle morphological and functional changes in the myocardium. In this investigation, we aimed to review the performance of various CMR methods in diagnosing cardiotoxicity in BC, induced by chemotherapy or radiotherapy. For this purpose, we reviewed the literature available in PubMed, MEDLINE, Cochrane, Google Scholar, and Scopus databases. Our literature review showed that CMR is a valuable modality for identifying and predicting subclinical cardiotoxicity induced by chemotherapy. The novel T1, T2, and extracellular volume mapping techniques may provide critical information about cardiotoxicity, in addition to other CMR features such as functional and structural changes. However, further research is needed to verify the exact role of these methods in identifying cardiotoxicity and patient management. Since multiple studies have reported the improvement of left ventricular performance following the termination of chemotherapy regimens, CMR remains an essential imaging tool for the prediction of cardiotoxicity and, consequently, decreases the mortality rate of BC due to heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Carreras G, Lachi A, Boffi R et al (2020) Burden of disease from breast cancer attributable to smoking and second-hand smoke exposure in Europe. Int J Cancer:ijc.33021. https://doi.org/10.1002/ijc.33021

  2. Anderson WF, Jatoi I, Devesa SS (2005) Distinct breast cancer incidence and prognostic patterns in the NCI’s SEER program: suggesting a possible link between etiology and outcome. Breast Cancer Res Treat 90:127–137. https://doi.org/10.1007/s10549-004-3777-3

    Article  PubMed  Google Scholar 

  3. Baselga J, Carbonell X, Castañeda-Soto NJ, Clemens M, Green M, Harvey V, Morales S, Barton C, Ghahramani P (2005) Phase II study of efficacy, safety, and pharmacokinetics of trastuzumab monotherapy administered on a 3-weekly schedule. J Clin Oncol 23:2162–2171. https://doi.org/10.1200/JCO.2005.01.014

    Article  CAS  PubMed  Google Scholar 

  4. Cai F, Luis MAF, Lin X et al (2019) Anthracycline-induced cardiotoxicity in the chemotherapy treatment of breast cancer: preventive strategies and treatment. Mol Clin Oncol 11:15–23

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen J, Long JB, Hurria A, Owusu C, Steingart RM, Gross CP (2012) Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Coll Cardiol 60:2504–2512. https://doi.org/10.1016/j.jacc.2012.07.068

    Article  CAS  PubMed  Google Scholar 

  6. Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, Baughman KL, Kasper EK (2000) Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med 342:1077–1084. https://doi.org/10.1056/NEJM200004133421502

    Article  CAS  PubMed  Google Scholar 

  7. Thavendiranathan P, Wintersperger BJ, Flamm SD, Marwick TH (2013) Cardiac MRI in the assessment of cardiac injury and toxicity from cancer chemotherapy a systematic review. Circ Cardiovasc Imaging 6:1080–1091

    Article  PubMed  Google Scholar 

  8. Narayan V, Ky B (2018) Common cardiovascular complications of cancer therapy: epidemiology, risk prediction, and prevention. Annu Rev Med 69:97–111. https://doi.org/10.1146/annurev-med-041316-090622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2802286/. Accessed 1 Aug 2020

  10. Armenian SH, Xu L, Ky B, Sun C, Farol LT, Pal SK, Douglas PS, Bhatia S, Chao C (2016) Cardiovascular disease among survivors of adult-onset cancer: a community-based retrospective cohort study. J Clin Oncol 34:1122–1130. https://doi.org/10.1200/JCO.2015.64.0409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moslehi JJ (2016) Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med 375:1457–1467

    Article  CAS  PubMed  Google Scholar 

  12. Cardiovascular toxicity of the first line cancer chemotherapeutic agents: doxorubicin cyclophosphamide, streptozotocin and bevacizumab | Request PDF. https://www.researchgate.net/publication/6639516_Cardiovascular_toxicity_of_the_first_line_cancer_chemotherapeutic_agents_Doxorubicin_cyclophosphamide_streptozotocin_and_bevacizumab. Accessed 1 Aug 2020

  13. Chang HM, Moudgil R, Scarabelli T, Okwuosa TM, Yeh ETH (2017) Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management: Part 1. J Am Coll Cardiol 70:2536–2551

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jolly MP, Jordan JH, Meléndez GC, McNeal GR, D’Agostino RB Jr, Hundley WG (2017) Automated assessments of circumferential strain from cine CMR correlate with LVEF declines in cancer patients early after receipt of cardio-toxic chemotherapy. J Cardiovasc Magn Reson 19. https://doi.org/10.1186/s12968-017-0373-3

  15. Pituskin E, Haykowsky M, Mackey JR et al (2011) Rationale and design of the Multidisciplinary Approach to Novel Therapies in Cardiology Oncology Research Trial (MANTICORE 101 - Breast): a randomized, placebo-controlled trial to determine if conventional heart failure pharmacotherapy can prevent trastuzumab-mediated left ventricular remodeling among patients with HER2+ early breast cancer using cardiac MRI. BMC Cancer 11. https://doi.org/10.1186/1471-2407-11-318

  16. Fanous I, Dillon P (2016) Cancer treatment-related cardiac toxicity: prevention, assessment and management. Med Oncol 33

  17. Jerusalem G, Moonen M, Freres P, Lancellotti P (2015) The European Association of Cardiovascular Imaging/Heart Failure Association Cardiac Oncology Toxicity Registry: long-term benefits for breast cancer treatment. Future Oncol 11:2791–2794. https://doi.org/10.2217/fon.15.227

    Article  CAS  PubMed  Google Scholar 

  18. Depardon E, Kanoun S, Humbert O, Bertaut A, Riedinger JM, Tal I, Vrigneaud JM, Lasserre M, Toubeau M, Berriolo-Riedinger A, Dygai-Cochet I, Fumoleau P, Brunotte F, Cochet A (2018) FDG PET/CT for prognostic stratification of patients with metastatic breast cancer treated with first line systemic therapy: comparison of EORTC criteria and PERCIST. PLoS One 13:e0199529. https://doi.org/10.1371/journal.pone.0199529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Parker J, Gebretsadik T, Sabogal F, Newman J, Lawson HW (1998) Mammography screening among California Medicare beneficiaries: 1993- 1994. Am J Prev Med 15:198–205. https://doi.org/10.1016/S0749-3797(98)00045-2

    Article  CAS  PubMed  Google Scholar 

  20. Martel S, Maurer C, Lambertini M, Pondé N, de Azambuja E (2017) Breast cancer treatment-induced cardiotoxicity. Expert Opin Drug Saf 16:1021–1038

    Article  CAS  PubMed  Google Scholar 

  21. Yoon HJ, Kim HN, Yun Y et al (2015) Background intestinal 18F-FDG uptake is related to serum lipid profile and obesity in breast cancer patients. PLoS One 10. https://doi.org/10.1371/journal.pone.0141473

  22. Di Cosimo S, La Verde N, Moretti A et al (2019) Neoadjuvant eribulin mesylate following anthracycline and taxane in triple negative breast cancer: results from the HOPE study. PLoS One 14:e0220644. https://doi.org/10.1371/journal.pone.0220644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Razzaghi H, Troester MA, Gierach GL, Olshan AF, Yankaskas BC, Millikan RC (2012) Mammographic density and breast cancer risk in White and African American Women. Breast Cancer Res Treat 135:571–580. https://doi.org/10.1007/s10549-012-2185-3

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen S, Ibrahim NK, Yan Y, Wong ST, Wang H, Wong FC (2017) Complete metabolic response on interim 18 F-fluorodeoxyglucose positron emission tomography/computed tomography to predict long-term survival in patients with breast cancer undergoing neoadjuvant chemotherapy. Oncologist 22:526–534. https://doi.org/10.1634/theoncologist.2016-0334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yoon HJ, Kim KH, Kim HY, Park H, Cho JY, Hong YJ, Park HW, Kim JH, Ahn Y, Jeong MH, Cho JG, Park JC (2019) Impacts of non-recovery of trastuzumab-induced cardiomyopathy on clinical outcomes in patients with breast cancer. Clin Res Cardiol 108:892–900. https://doi.org/10.1007/s00392-019-01417-x

    Article  PubMed  Google Scholar 

  26. Bonfill X, Roura P, Moreno C, Rivero E, Rué M (1997) Cancer mortality in the counties of Catalonia (1983-1989). Gac Sanit 11:74–82. https://doi.org/10.1016/s0213-9111(97)71279-2

    Article  CAS  PubMed  Google Scholar 

  27. Krishnaraj A, Yankaskas BC, Stearns SC (2006) Screening mammography after breast cancer treatment: patterns in community practice. Breast Cancer Res Treat 97:73–80

    Article  PubMed  Google Scholar 

  28. Landau-Ossondo M, Rabia N, Jos-Pelage J, Marquet LM, Isidore Y, Saint-Aimé C, Martin M, Irigaray P, Belpomme D, ARTAC international research group on pesticides (2009) Why pesticides could be a common cause of prostate and breast cancers in the French Caribbean Island, Martinique. An overview on key mechanisms of pesticide-induced cancer. Biomed Pharmacother 63:383–395

    Article  CAS  PubMed  Google Scholar 

  29. Boerma M (2018) Cardiovascular side effects of breast cancer therapy. In: Gender Differences in the pathogenesis and management of heart disease. Springer International Publishing, pp 303–316

  30. Imene A, Maurice AJ, Arij M et al (2015) Breast cancer association with CYP1A2 activity and gene polymorphisms--a preliminary case-control study in Tunisia. Asian Pac J Cancer Prev 16:3559–3563. https://doi.org/10.7314/apjcp.2015.16.8.3559

    Article  PubMed  Google Scholar 

  31. Radiotherapy effects on systolic myocardial function detected by strain rate imaging in a left-breast cancer patient - PubMed. https://pubmed.ncbi.nlm.nih.gov/17673445/. Accessed 1 Aug 2020

  32. Marinko T, Dolenc J, Bilban-Jakopin C (2014) Cardiotoxicity of concomitant radiotherapy and trastuzumab for early breast cancer. Radiol Oncol 48:105–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Giordano G, Spagnuolo A, Olivieri N, Corbo C, Campagna A, Spagnoletti I, Pennacchio RM, Campidoglio S, Pancione M, Palladino L, Villari B, Febbraro A (2016) Cancer drug related cardiotoxicity during breast cancer treatment. Expert Opin Drug Saf 15:1063–1074

    Article  CAS  PubMed  Google Scholar 

  34. Thavendiranathan P, Amir E (2017) Left ventricular dysfunction with trastuzumab therapy: is primary prevention the best option? J Clin Oncol 35:820–825. https://doi.org/10.1200/JCO.2016.71.0038

    Article  PubMed  Google Scholar 

  35. Singla A, Kumar G, Bardia A (2012) Personalizing cardiovascular disease prevention among breast cancer survivors. Curr Opin Cardiol 27:1. https://doi.org/10.1097/HCO.0b013e3283570040

    Article  Google Scholar 

  36. Nicolazzi MA, Carnicelli A, Fuorlo M et al (2018) Anthracycline and trastuzumab-induced cardiotoxicity in breast cancer. Eur Rev Med Pharmacol Sci 22. https://doi.org/10.26355/EURREV_201804_14752

  37. Copeland-Halperin RS, Liu JE, Yu AF (2019) Cardiotoxicity of HER2-targeted therapies. Curr Opin Cardiol 34:451–458

    Article  PubMed  PubMed Central  Google Scholar 

  38. Foulkes SJ, Howden EJ, Bigaran A et al (2019) Persistent impairment in cardiopulmonary fitness after breast cancer chemotherapy. Med Sci Sports Exerc 51:1573–1581. https://doi.org/10.1249/MSS.0000000000001970

    Article  CAS  PubMed  Google Scholar 

  39. Darby SC, Cutter DJ, Boerma M, Constine LS, Fajardo LF, Kodama K, Mabuchi K, Marks LB, Mettler FA, Pierce LJ, Trott KR, Yeh ETH, Shore RE (2010) Radiation-related heart disease: current knowledge and future prospects. Int J Radiat Oncol Biol Phys 76:656–665

    Article  PubMed  PubMed Central  Google Scholar 

  40. Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brønnum D, Correa C, Cutter D, Gagliardi G, Gigante B, Jensen MB, Nisbet A, Peto R, Rahimi K, Taylor C, Hall P (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368:987–998. https://doi.org/10.1056/NEJMoa1209825

    Article  CAS  PubMed  Google Scholar 

  41. Van Den Bogaard VAB, Ta BDP, Van Der Schaaf A et al (2017) Validation and modification of a prediction model for acute cardiac events in patients with breast cancer treated with radiotherapy based on three-dimensional dose distributions to cardiac substructures. J Clin Oncol 35:1171–1178. https://doi.org/10.1200/JCO.2016.69.8480

    Article  PubMed  PubMed Central  Google Scholar 

  42. Canney PA, Sanderson R, Deehan C, Wheldon T (2001) Variation in the probability of cardiac complications with radiation technique in early breast cancer. Br J Radiol 74:262–265. https://doi.org/10.1259/bjr.74.879.740262

    Article  CAS  PubMed  Google Scholar 

  43. Formenti SC, DeWyngaert JK, Jozsef G, Goldberg JD (2012) Prone vs supine positioning for breast cancer radiotherapy. JAMA 308:861–863

    Article  CAS  PubMed  Google Scholar 

  44. Lu HM, Cash E, Chen MH, Chin L, Manning WJ, Harris J, Bornstein B (2000) Reduction of cardiac volume in left-breast treatment fields by respiratory maneuvers: a CT study. Int J Radiat Oncol Biol Phys 47:895–904. https://doi.org/10.1016/S0360-3016(00)00512-5

    Article  CAS  PubMed  Google Scholar 

  45. Chhabra A, Langen K, Mehta MP (2016) An overview of modern proton therapy. Chinese. Clin Oncol 5:2. https://doi.org/10.21037/CCO.V0I0.10584

    Article  Google Scholar 

  46. Dunet V, Schwitter J, Meuli R, Beigelman-Aubry C (2016) Incidental extracardiac findings on cardiac MR: systematic review and meta-analysis. J Magn Reson Imaging 43:929–939

    Article  PubMed  Google Scholar 

  47. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol - PubMed. https://pubmed.ncbi.nlm.nih.gov/26903532/. Accessed 6 Aug 2020

  48. Pituskin E, Mackey JR, Koshman S, Jassal D, Pitz M, Haykowsky MJ, Pagano JJ, Chow K, Thompson RB, Vos LJ, Ghosh S, Oudit GY, Ezekowitz JA, Paterson DI (2017) Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101-Breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J Clin Oncol 35:870–877. https://doi.org/10.1200/JCO.2016.68.7830

    Article  CAS  PubMed  Google Scholar 

  49. Tuzovic M, Agarwal M, Thareja N, Yang EH (2019) Cardiac Toxicity of HER-2 Targeted Regimens

  50. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, White JA, Abdel-Aty H, Gutberlet M, Prasad S, Aletras A, Laissy JP, Paterson I, Filipchuk NG, Kumar A, Pauschinger M, Liu P, International Consensus Group on Cardiovascular Magnetic Resonance in Myocarditis (2009) Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol 53:1475–1487

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ugander M, Bagi PS, Oki AJ, Chen B, Hsu LY, Aletras AH, Shah S, Greiser A, Kellman P, Arai AE (2012) Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging 5:596–603. https://doi.org/10.1016/j.jcmg.2012.01.016

    Article  PubMed  PubMed Central  Google Scholar 

  52. Motwani M, Kidambi A, Herzog BA, Uddin A, Greenwood JP, Plein S (2013) MR imaging of cardiac tumors and masses: a review of methods and clinical applications. Radiology 268:26–43

    Article  PubMed  Google Scholar 

  53. Ferreira VM, Schulz-Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U, Kindermann I, Gutberlet M, Cooper LT, Liu P, Friedrich MG (2018) Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol 72:3158–3176

    Article  PubMed  Google Scholar 

  54. Wassmuth R, Lentzsch S, Erdbruegger U, Schulz-Menger J, Doerken B, Dietz R, Friedrich MG (2001) Subclinical cardiotoxic effects of anthracyclines as assessed by magnetic resonance imaging - a pilot study. Am Heart J 141:1007–1013. https://doi.org/10.1067/mhj.2001.115436

    Article  CAS  PubMed  Google Scholar 

  55. Gräni C, Eichhorn C, Bière L, Murthy VL, Agarwal V, Kaneko K, Cuddy S, Aghayev A, Steigner M, Blankstein R, Jerosch-Herold M, Kwong RY (2017) Prognostic value of cardiac magnetic resonance tissue characterization in risk stratifying patients with suspected myocarditis. J Am Coll Cardiol 70:1964–1976. https://doi.org/10.1016/j.jacc.2017.08.050

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hulten E, Agarwal V, Cahill M, Cole G, Vita T, Parrish S, Bittencourt MS, Murthy VL, Kwong R, di Carli MF, Blankstein R (2016) Presence of late gadolinium enhancement by cardiac magnetic resonance among patients with suspected cardiac sarcoidosis is associated with adverse cardiovascular prognosis: a systematic review and meta-Analysis. Circ Cardiovasc Imaging 9. https://doi.org/10.1161/CIRCIMAGING.116.005001

  57. O’Hanlon R, Grasso A, Roughton M et al (2010) Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol 56:867–874. https://doi.org/10.1016/j.jacc.2010.05.010

    Article  PubMed  Google Scholar 

  58. Lunning MA, Kutty S, Rome ET, Li L, Padiyath A, Loberiza F, Bociek RG, Bierman PJ, Vose JM, Armitage JO, Porter TR (2015) Cardiac magnetic resonance imaging for the assessment of the myocardium after doxorubicin-based chemotherapy. Am J Clin Oncol 38:377–381. https://doi.org/10.1097/COC.0b013e31829e19be

    Article  CAS  PubMed  Google Scholar 

  59. Fallah-Rad N, Walker JR, Wassef A, Lytwyn M, Bohonis S, Fang T, Tian G, Kirkpatrick IDC, Singal PK, Krahn M, Grenier D, Jassal DS (2011) The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor iipositive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol 57:2263–2270. https://doi.org/10.1016/j.jacc.2010.11.063

    Article  CAS  PubMed  Google Scholar 

  60. Mackay B, Ewer MS, Carrasco CH, Benjamin RS (1994) Assessment of anthracycline cardiomyopathy by endomyocardial biopsy. Ultrastruct Pathol 18:203–211. https://doi.org/10.3109/01913129409016291

    Article  CAS  PubMed  Google Scholar 

  61. Bernaba BN, Chan JB, Lai CK, Fishbein MC (2010) Pathology of late-onset anthracycline cardiomyopathy. Cardiovasc Pathol 19:308–311. https://doi.org/10.1016/j.carpath.2009.07.004

    Article  CAS  PubMed  Google Scholar 

  62. Nayak KS, Nielsen JF, Bernstein MA, Markl M, D. Gatehouse P, M. Botnar R, Saloner D, Lorenz C, Wen H, S. Hu B, Epstein FH, N. Oshinski J, Raman SV (2015) Cardiovascular magnetic resonance phase contrast imaging. J Cardiovasc Magn Reson 17:71

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chaosuwannakit N, D’Agostino R, Hamilton CA et al (2010) Aortic stiffness increases upon receipt of anthracycline chemotherapy. J Clin Oncol 28:166–172. https://doi.org/10.1200/JCO.2009.23.8527

    Article  CAS  PubMed  Google Scholar 

  64. Drafts BC, Twomley KM, D’Agostino R et al (2013) Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging 6:877–885. https://doi.org/10.1016/j.jcmg.2012.11.017

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chotenimitkhun R, Gregory Hundley W (2011) Pharmacological stress cardiovascular magnetic resonance. Postgrad Med 123:162–170. https://doi.org/10.3810/pgm.2011.05.2295

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kramer CM, Barkhausen J, Flamm SD et al (2013) Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson 15:91

    Article  PubMed  PubMed Central  Google Scholar 

  67. Harries I, Liang K, Williams M, Berlot B, Biglino G, Lancellotti P, Plana JC, Bucciarelli-Ducci C (2020) Magnetic resonance imaging to detect cardiovascular effects of cancer therapy. JACC: CardioOncology 2:270–292. https://doi.org/10.1016/j.jaccao.2020.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ong G, Brezden-Masley C, Dhir V, Deva DP, Chan KKW, Chow CM, Thavendiranathan D, Haq R, Barfett JJ, Petrella TM, Connelly KA, Yan AT (2018) Myocardial strain imaging by cardiac magnetic resonance for detection of subclinical myocardial dysfunction in breast cancer patients receiving trastuzumab and chemotherapy. Int J Cardiol 261:228–233. https://doi.org/10.1016/j.ijcard.2018.03.041

    Article  PubMed  Google Scholar 

  69. Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, Ganame J, Sebag IA, Agler DA, Badano LP, Banchs J, Cardinale D, Carver J, Cerqueira M, DeCara JM, Edvardsen T, Flamm SD, Force T, Griffin BP, Jerusalem G, Liu JE, Magalhães A, Marwick T, Sanchez LY, Sicari R, Villarraga HR, Lancellotti P (2014) Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American society of echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr 27:911–939. https://doi.org/10.1016/j.echo.2014.07.012

    Article  PubMed  Google Scholar 

  70. Poterucha JT, Kutty S, Lindquist RK, Li L, Eidem BW (2012) Changes in left ventricular longitudinal strain with anthracycline chemotherapy in adolescents precede subsequent decreased left ventricular ejection fraction. J Am Soc Echocardiogr 25:733–740. https://doi.org/10.1016/j.echo.2012.04.007

    Article  PubMed  Google Scholar 

  71. Negishi K, Negishi T, Hare JL, Haluska BA, Plana JC, Marwick TH (2013) Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J Am Soc Echocardiogr 26:493–498. https://doi.org/10.1016/j.echo.2013.02.008

    Article  PubMed  Google Scholar 

  72. Jordan JH, Sukpraphrute B, Meléndez GC, Jolly MP, D’Agostino RB Jr, Hundley WG (2017) Early myocardial strain changes during potentially cardiotoxic chemotherapy may occur as a result of reductions in left ventricular end-diastolic volume: the need to interpret left ventricular strain with volumes. Circulation 135:2575–2577

    Article  PubMed  PubMed Central  Google Scholar 

  73. Thavendiranathan P, Amir E, Bedard P, Crean A, Paul N, Nguyen ET, Wintersperger BJ (2014) Regional myocardial edema detected by T2 mapping is a feature of cardiotoxicity in breast cancer patients receiving sequential therapy with anthracyclines and trastuzumab. J Cardiovasc Magn Reson 16:P273. https://doi.org/10.1186/1532-429x-16-s1-p273

    Article  PubMed Central  Google Scholar 

  74. Cardiovascular toxicity of the first line cancer chemotherapeutic agents: doxorubicin, cyclophosphamide, streptozotocin and bevacizumab - PubMed. https://pubmed.ncbi.nlm.nih.gov/17159809/. Accessed 1 Aug 2020

  75. Salerno M, Sharif B, Arheden H, Kumar A, Axel L, Li D, Neubauer S (2017) Recent advances in cardiovascular magnetic resonance. Circ Cardiovasc Imaging 10. https://doi.org/10.1161/CIRCIMAGING.116.003951

  76. Taylor AJ, Salerno M, Dharmakumar R, Jerosch-Herold M (2016) T1 mapping basic techniques and clinical applications. JACC Cardiovasc Imaging 9:67–81

    Article  PubMed  Google Scholar 

  77. Bönner F, Spieker M, Haberkorn S et al (2016) Myocardial T2 mapping increases noninvasive diagnostic accuracy for biopsy-proven myocarditis. JACC Cardiovasc Imaging 9:1467–1469

    Article  PubMed  Google Scholar 

  78. Abdel-Aty H, Zagrosek A, Schulz-Menger J, Taylor AJ, Messroghli D, Kumar A, Gross M, Dietz R, Friedrich MG (2004) Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation 109:2411–2416. https://doi.org/10.1161/01.CIR.0000127428.10985.C6

    Article  PubMed  Google Scholar 

  79. Haaf P, Garg P, Messroghli DR et al (2016) Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson 18

  80. Neilan TG, Coelho-Filho OR, Shah RV, Feng JH, Pena-Herrera D, Mandry D, Pierre-Mongeon F, Heydari B, Francis SA, Moslehi J, Kwong RY, Jerosch-Herold M (2013) Myocardial extracellular volume by cardiac magnetic resonance imaging in patients treated with anthracycline-based chemotherapy. Am J Cardiol 111:717–722. https://doi.org/10.1016/j.amjcard.2012.11.022

    Article  CAS  PubMed  Google Scholar 

  81. An integrated characterization of serological, pathological, and functional events in doxorubicin-induced cardiotoxicity - PubMed. https://pubmed.ncbi.nlm.nih.gov/24675088/. Accessed 6 Aug 2020

  82. Armstrong GT, Plana JC, Zhang N, Srivastava D, Green DM, Ness KK, Daniel Donovan F, Metzger ML, Arevalo A, Durand JB, Joshi V, Hudson MM, Robison LL, Flamm SD (2012) Screening adult survivors of childhood cancer for cardiomyopathy: comparison of echocardiography and cardiac magnetic resonance imaging. J Clin Oncol 30:2876–2884. https://doi.org/10.1200/JCO.2011.40.3584

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lawley C, Wainwright C, Segelov E et al (2012) Pilot study evaluating the role of cardiac magnetic resonance imaging in monitoring adjuvant trastuzumab therapy for breast cancer. Asia Pac J Clin Oncol 8:95–100. https://doi.org/10.1111/j.1743-7563.2011.01462.x

    Article  PubMed  Google Scholar 

  84. Walker J, Bhullar N, Fallah-Rad N, Lytwyn M, Golian M, Fang T, Summers AR, Singal PK, Barac I, Kirkpatrick ID, Jassal DS (2010) Role of three-dimensional echocardiography in breast cancer: comparison with two-dimensional echocardiography, multiple-gated acquisition scans, and cardiac magnetic resonance imaging. J Clin Oncol 28:3429–3436. https://doi.org/10.1200/JCO.2009.26.7294

    Article  PubMed  Google Scholar 

  85. Dhir V, Yan AT, Nisenbaum R, Sloninko J, Connelly KA, Barfett J, Haq R, Kirpalani A, Chan KKW, Petrella TM, Brezden-Masley C (2019) Assessment of left ventricular function by CMR versus MUGA scans in breast cancer patients receiving trastuzumab: a prospective observational study. Int J Cardiovasc Imaging 35:2085–2093. https://doi.org/10.1007/s10554-019-01648-z

    Article  PubMed  Google Scholar 

  86. Nakano S, Takahashi M, Kimura F, Senoo T, Saeki T, Ueda S, Tanno J, Senbonmatsu T, Kasai T, Nishimura S (2016) Cardiac magnetic resonance imaging-based myocardial strain study for evaluation of cardiotoxicity in breast cancer patients treated with trastuzumab: a pilot study to evaluate the feasibility of the method. Cardiol J 23:270–280. https://doi.org/10.5603/CJ.a2016.0023

    Article  PubMed  Google Scholar 

  87. Song L, Brezden-Masley C, Ramanan V, Ghugre N, Barfett JJ, Chan KKW, Haq R, Petrella T, Dhir V, Jimenez-Juan L, Chacko BR, Kotha V, Connelly KA, Yan AT (2019) Serial measurements of left ventricular systolic and diastolic function by cardiac magnetic resonance imaging in patients with early stage breast cancer on trastuzumab. Am J Cardiol 123:1173–1179. https://doi.org/10.1016/j.amjcard.2018.12.046

    Article  CAS  PubMed  Google Scholar 

  88. CMR in the Evaluation of LV Diastolic Dysfunction - American College of Cardiology. https://www.acc.org/latest-in-cardiology/ten-points-to-remember/2020/01/10/11/30/cmr-in-the-evaluation-of-diastolic-dysfunction. Accessed 6 Aug 2020

  89. Saiki H, Petersen IA, Scott CG, Bailey KR, Dunlay SM, Finley RR, Ruddy KJ, Yan E, Redfield MM (2017) Risk of heart failure with preserved ejection fraction in older women after contemporary radiotherapy for breast cancer. Circulation 135:1388–1396. https://doi.org/10.1161/CIRCULATIONAHA.116.025434

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ben-Horin S, Banke I, Guetta V, Livneh A (2006) Large symptomatic pericardial effusion as the presentation of unrecognized cancer: a study in 173 consecutive patients undergoing pericardiocentesis. Medicine 85:49–53. https://doi.org/10.1097/01.md.0000199556.69588.8e

    Article  PubMed  Google Scholar 

  91. Barthur A, Brezden-Masley C, Connelly KA, Dhir V, Chan KKW, Haq R, Kirpalani A, Barfett JJ, Jimenez-Juan L, Karur GR, Deva DP, Yan AT (2017) Longitudinal assessment of right ventricular structure and function by cardiovascular magnetic resonance in breast cancer patients treated with trastuzumab: a prospective observational study. J Cardiovasc Magn Reson 19. https://doi.org/10.1186/s12968-017-0356-4

  92. Fallah-Rad N, Lytwyn M, Fang T, Kirkpatrick I, Jassal DS (2008) Delayed contrast enhancement cardiac magnetic resonance imaging in trastuzumab induced cardiomyopathy. J Cardiovasc Magn Reson:10. https://doi.org/10.1186/1532-429X-10-5

  93. Ferreira de Souza T, Quinaglia AC, Silva T, Osorio Costa F et al (2018) Anthracycline therapy is associated with cardiomyocyte atrophy and preclinical manifestations of heart disease. JACC Cardiovasc Imaging 11:1045–1055. https://doi.org/10.1016/j.jcmg.2018.05.012

    Article  PubMed  Google Scholar 

  94. Effect of candesartan and metoprolol on myocardial tissue composition during anthracycline treatment: the PRADA trial - PubMed. https://pubmed.ncbi.nlm.nih.gov/29106497/. Accessed 1 Aug 2020

  95. Galán-Arriola C, Lobo M, Vílchez-Tschischke JP, López GJ, de Molina-Iracheta A, Pérez-Martínez C, Agüero J, Fernández-Jiménez R, Martín-García A, Oliver E, Villena-Gutierrez R, Pizarro G, Sánchez PL, Fuster V, Sánchez-González J, Ibanez B (2019) Serial magnetic resonance imaging to identify early stages of anthracycline-induced cardiotoxicity. J Am Coll Cardiol 73:779–791. https://doi.org/10.1016/j.jacc.2018.11.046

    Article  PubMed  Google Scholar 

  96. Altaha MA, Nolan M, Marwick TH, Somerset E, Houbois C, Amir E, Yip P, Connelly KA, Michalowska M, Sussman MS, Wintersperger BJ, Thavendiranathan P (2020) Can quantitative cmr tissue characterization adequately identify cardiotoxicity during chemotherapy?: impact of temporal and observer variability. JACC Cardiovasc Imaging 13:951–962. https://doi.org/10.1016/j.jcmg.2019.10.016

    Article  PubMed  Google Scholar 

  97. Gong IY, Ong G, Brezden-Masley C, Dhir V, Deva DP, Chan KKW, Graham JJ, Chow CM, Thavendiranathan P, Dai D, Ng MY, Barfett JJ, Connelly KA, Yan AT (2019) Early diastolic strain rate measurements by cardiac MRI in breast cancer patients treated with trastuzumab: a longitudinal study. Int J Cardiovasc Imaging 35:653–662. https://doi.org/10.1007/s10554-018-1482-2

    Article  PubMed  Google Scholar 

  98. Jasaityte R, Claus P, Teske AJ, Herbots L, Verheyden B, Jurcut R, Rademakers F, D'hooge J (2013) The slope of the segmental stretch-strain relationship as a noninvasive index of LV inotropy. JACC Cardiovasc Imaging 6:419–428. https://doi.org/10.1016/j.jcmg.2012.10.022

    Article  PubMed  Google Scholar 

  99. Jordan JH, Vasu S, Morgan TM et al (2016) Anthracycline-associated T1 mapping characteristics are elevated independent of the presence of cardiovascular comorbidities in cancer survivors. Circ Cardiovasc Imaging 9. https://doi.org/10.1161/CIRCIMAGING.115.004325

  100. Kimball A, Patil S, Koczwara B, Raman KS, Perry R, Grover S, Selvanayagam J (2018) Late characterisation of cardiac effects following anthracycline and trastuzumab treatment in breast cancer patients. Int J Cardiol 261:159–161. https://doi.org/10.1016/j.ijcard.2018.03.025

    Article  PubMed  Google Scholar 

  101. Chang HM, Okwuosa TM, Scarabelli T, Moudgil R, Yeh ETH (2017) Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management: Part 2. J Am Coll Cardiol 70:2552–2565

    Article  PubMed  PubMed Central  Google Scholar 

  102. Dogan SE, Mizrak D, Alkan A, Demirkazik A (2017) Docetaxel-induced pericardial effusion. J Oncol Pharm Pract 23:389–391. https://doi.org/10.1177/1078155216643859

    Article  CAS  PubMed  Google Scholar 

  103. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC. https://pubmed.ncbi.nlm.nih.gov/27567406/. Accessed 6 Aug 2020

  104. Ning MS, Tang L, Gomez DR, Xu T, Luo Y, Huo J, Mouhayar E, Liao Z (2017) Incidence and predictors of pericardial effusion after chemoradiation therapy for locally advanced non-small cell lung cancer. Int J Radiat Oncol Biol Phys 99:70–79. https://doi.org/10.1016/j.ijrobp.2017.05.022

    Article  PubMed  PubMed Central  Google Scholar 

  105. Pericardial disease associated with malignancy - UpToDate. https://www.uptodate.com/contents/pericardial-disease-associated-with-malignancy. Accessed 15 Aug 2020

  106. Hoey ETD, Gulati GS, Ganeshan A, Watkin RW, Simpson H, Sharma S (2011) Cardiovascular MRI for assessment of infectious and inflammatory conditions of the heart. Am J Roentgenol 197:103–112

    Article  Google Scholar 

  107. Bogaert J, Francone M (2009) Cardiovascular magnetic resonance in pericardial diseases. J Cardiovasc Magn Reson 11

  108. Richardson P, McKenna RW, Bristow M et al (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation 93:841–842

    Article  CAS  PubMed  Google Scholar 

  109. Gujral DM, Lloyd G, Bhattacharyya S (2016) Radiation-induced valvular heart disease. Heart 102:269–276

    Article  CAS  PubMed  Google Scholar 

  110. Wethal T, Lund MB, Edvardsen T, Fosså SD, Pripp AH, Holte H, Kjekshus J, Fosså A (2009) Valvular dysfunction and left ventricular changes in Hodgkin’s lymphoma survivors. A longitudinal study. Br J Cancer 101:575–581. https://doi.org/10.1038/sj.bjc.6605191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Amin HZ, Amin LZ, Pradipta A (2020) Takotsubo cardiomyopathy: a brief review. J Med Life 13:3–7

    PubMed  PubMed Central  Google Scholar 

  112. Desai A, Noor A, Joshi S, Kim AS (2019) Takotsubo cardiomyopathy in cancer patients. https://doi.org/10.1186/s40959-019-0042-9

  113. Molteni LP, Rampinelli I, Cergnul M, Scaglietti U, Paino AM, Noonan DM, Bucci EO, Gottardi O, Albini A (2010) Capecitabine in breast cancer: the issue of cardiotoxicity during fluoropyrimidine treatment. Breast J 16:S45–S48

    Article  CAS  PubMed  Google Scholar 

  114. Qasem A, Bin Abdulhak AA, Aly A, Moormeier J (2016) Capecitabine-tnduced Takotsubo cardiomyopathy. Am J Ther 23:e1188–e1192. https://doi.org/10.1097/MJT.0000000000000134

    Article  PubMed  Google Scholar 

  115. Khanji M, Nolan S, Gwynne S, Pudney D, Ionescu A (2013) Tako-Tsubo syndrome after trastuzumab - an unusual complication of chemotherapy for breast cancer. Clin Oncol 25:329

    Article  CAS  Google Scholar 

  116. Balanescu DV, Liu VY, Donisan T et al (2018) P1253Clinical features and outcomes of patients with chemotherapy-induced Takotsubo stress cardiomyopathy. Eur Heart J 39. https://doi.org/10.1093/eurheartj/ehy565.p1253

  117. Cammann VL, Sarcon A, Ding KJ et al (2019) Clinical features and outcomes of patients with malignancy and Takotsubo syndrome: observations from the International Takotsubo Registry. J Am Heart Assoc 8. https://doi.org/10.1161/JAHA.118.010881

  118. Bratis K (2017) Cardiac magnetic resonance in Takotsubo syndrome. Eur Cardiol Rev 12:58–62

    Article  Google Scholar 

  119. Smith REA, Dobbs HJ, Martin JF (1993) Radiotherapy, left-sided breast cancer, and ischaemic heart disease. Br Heart J 69:483–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mehta LS, Watson KE, Barac A, Beckie TM, Bittner V, Cruz-Flores S, Dent S, Kondapalli L, Ky B, Okwuosa T, Piña IL, Volgman AS (2018) Cardiovascular disease and breast cancer: where these entities intersect: a scientific statement from the American Heart Association. Circulation 137:e30–e66. https://doi.org/10.1161/CIR.0000000000000556

    Article  PubMed  PubMed Central  Google Scholar 

  121. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Socie. https://pubmed.ncbi.nlm.nih.gov/28886621/. Accessed 6 Aug 2020

  122. Kristensen SD, Knuuti J, Saraste A, Anker S, Bøtker HE, Hert SD, Ford I, Gonzalez-Juanatey JR, Gorenek B, Heyndrickx GR, Hoeft A, Huber K, Iung B, Kjeldsen KP, Longrois D, Lüscher TF, Pierard L, Pocock S, Price S, Roffi M, Sirnes PA, Sousa-Uva M, Voudris V, Funck-Brentano C, Authors/Task Force Members (2014) 2014 ESC/ESA Guidelines on non-cardiac surgery: cardiovascular assessment and management: the Joint Task Force on non-cardiac surgery: cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA). Eur Heart J 35:2383–2431. https://doi.org/10.1093/eurheartj/ehu282

    Article  PubMed  Google Scholar 

  123. Hooning MJ, Botma A, Aleman BMP, Baaijens MHA, Bartelink H, Klijn JGM, Taylor CW, van Leeuwen FE (2007) Long-term risk of cardiovascular disease in 10-year survivors of breast cancer. J Natl Cancer Inst 99:365–375. https://doi.org/10.1093/jnci/djk064

    Article  PubMed  Google Scholar 

  124. Stewart MH, Jahangir E, Polin NM (2017) Valvular heart disease in cancer patients: etiology, diagnosis, and management. Curr Treat Options Cardiovasc Med 19

  125. Heidenreich PA, Hancock SL, Lee BK, Mariscal CS, Schnittger I (2003) Asymptomatic cardiac disease following mediastinal irradiation. J Am Coll Cardiol 42:743–749. https://doi.org/10.1016/S0735-1097(03)00759-9

    Article  PubMed  Google Scholar 

  126. Veeragandham RS, Goldin MD (1998) Surgical management of radiation-induced heart disease. Ann Thorac Surg 65:1014–1019. https://doi.org/10.1016/s0003-4975(98)00082-4

    Article  CAS  PubMed  Google Scholar 

  127. Sato A, Yoshihisa A, Miyata-Tatsumi M et al (2019) Valvular heart disease as a possible predictor of trastuzumab-induced cardiotoxicity in patients with breast cancer. Mol Clin Oncol 10:37–42. https://doi.org/10.3892/mco.2018.1764

    Article  CAS  PubMed  Google Scholar 

  128. Søndergaard L, Hildebrandt P, Lindvig K, Thomsen C, Stȧahlberg F, Kassis E, Henriksen O (1993) Valve area and cardiac output in aortic stenosis: quantification by magnetic resonance velocity mapping. Am Heart J 126:1156–1164. https://doi.org/10.1016/0002-8703(93)90669-Z

    Article  PubMed  Google Scholar 

  129. von Hoff DD, Layard MW, Basa P, Davis HL Jr, von Hoff A, Rozencweig M, Muggia FM (1979) Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 91:710–717. https://doi.org/10.7326/0003-4819-91-5-710

    Article  Google Scholar 

  130. Russo G, Cioffi G, Gori S, Tuccia F, Boccardi L, Khoury G, Lestuzzi C, Maurea N, Oliva S, Faggiano P, Tarantini L (2014) Role of hypertension on new onset congestive heart failure in patients receiving trastuzumab therapy for breast cancer. J Cardiovasc Med 15:141–146. https://doi.org/10.2459/JCM.0b013e328365afb5

    Article  CAS  Google Scholar 

  131. Han H, Guo W, Shi W, Yu Y, Zhang Y, Ye X, He J (2017) Hypertension and breast cancer risk: a systematic review and meta-analysis. Sci Rep 7. https://doi.org/10.1038/srep44877

  132. Cameron AC, Touyz RM, Lang NN (2016) Vascular complications of cancer chemotherapy. Can J Cardiol 32:852–862

    Article  PubMed  Google Scholar 

  133. Burger A, Löffler H, Bamberg M, Rodemann HP (1998) Molecular and cellular basis of radiation fibrosis. In: International Journal of Radiation Biology. Taylor & Francis, pp 401–408

  134. Jurado JA, Bashir R, Burket MW (2008) Radiation-induced peripheral artery disease. Catheter Cardiovasc Interv 72:563–568. https://doi.org/10.1002/ccd.21681

    Article  PubMed  Google Scholar 

  135. Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, Civelli M, Lamantia G, Colombo N, Curigliano G, Fiorentini C, Cipolla CM (2015) Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 131:1981–1988. https://doi.org/10.1161/CIRCULATIONAHA.114.013777

    Article  CAS  PubMed  Google Scholar 

  136. Piccirillo JF, Tierney RM, Costas I, Grove L, Spitznagel el Jr (2004) Prognostic importance of comorbidity in a hospital-based cancer registry. J Am Med Assoc 291:2441–2447. https://doi.org/10.1001/jama.291.20.2441

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Each author has participated sufficiently in this study.

Corresponding author

Correspondence to Nahid Rezaeian.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Code availability

Available.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, F., Safaei, A.M., Hosseini, L. et al. The role of cardiac magnetic resonance imaging in the detection and monitoring of cardiotoxicity in patients with breast cancer after treatment: a comprehensive review. Heart Fail Rev 26, 679–697 (2021). https://doi.org/10.1007/s10741-020-10028-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-10028-y

Keywords

Navigation