Skip to main content

Advertisement

Log in

Translating thyroid hormone effects into clinical practice: the relevance of thyroid hormone receptor α1 in cardiac repair

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Thyroid hormone (TH) appears to have a critical role in cardiac repair after injury beyond its role in development and metabolism homeostasis. This unique action is due to the fact that TH effect on the heart is shown to be differentiated depending on its administration on injured or healthy myocardium. Thus, TH can limit ischemia–reperfusion injury via a fine balance between pro-apoptotic and pro-survival signaling pathways. This response is thyroid hormone receptor (TRα1) dependent. Furthermore, an interaction between stress-induced growth kinase signaling and TRα1 is shown to occur and determine postischemic remodeling and cardiac recovery depending on the availability of TH. This new evidence is consistent with clinical observations showing the cardioprotective effect of TH treatment in cardiac surgery, transplantation and heart failure. TH and/or thyroid analogs may be novel agents in treating heart diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2013) Executive summary: heart disease and stroke statistics—2013 update: a report from the American heart association. Circulation 127(1):143–152. doi:10.1161/CIR.0b013e318282ab8f

    Article  PubMed  Google Scholar 

  2. Babu GG, Walker JM, Yellon DM, Hausenloy DJ (2011) Peri-procedural myocardial injury during percutaneous coronary intervention: an important target for cardioprotection. Eur Heart J 32(1):23–31. doi:10.1093/eurheartj/ehq393

    Article  CAS  PubMed  Google Scholar 

  3. Lee CH, Ju MH, Kim JB, Chung CH, Jung SH, Choo SJ, Lee JW (2014) Myocardial injury following aortic valve replacement for severe aortic stenosis: risk factor of postoperative myocardial injury and its impact on long-term outcomes. Korean J Thorac Cardiovasc Surg 47(3):233–239. doi:10.5090/kjtcs.2014.47.3.233

    Article  PubMed Central  PubMed  Google Scholar 

  4. Springeling T, Kirschbaum SW, Rossi A, Baks T, Karamermer Y, Schulz C, Ouhlous M, Duncker DJ, Moelker A, Krestin GP, Serruys PW, de Feyter P, van Geuns RJ (2012) Late cardiac remodeling after primary percutaneous coronary intervention-five-year cardiac magnetic resonance imaging follow-up. Circ J 77(1):81–88

    Article  PubMed  Google Scholar 

  5. Alameddine AK, Visintainer P, Normand SL, Wolf RE, Alameddine YA (2014) Cancer rates in adults after cardiac interventions: a preliminary observational report. Am J Clin Oncol. doi:10.1097/COC.0000000000000120

    PubMed  Google Scholar 

  6. Novitzky D, Cooper DK, Rosendale JD, Kauffman HM (2006) Hormonal therapy of the brain-dead organ donor: experimental and clinical studies. Transplantation 82(11):1396–1401. doi:10.1097/01.tp.0000237195.12342.f1

    Article  CAS  PubMed  Google Scholar 

  7. Ioannidis JP, Karvouni E, Katritsis DG (2003) Mortality risk conferred by small elevations of creatine kinase-MB isoenzyme after percutaneous coronary intervention. J Am Coll Cardiol 42(8):1406–1411

    Article  CAS  PubMed  Google Scholar 

  8. Bolognese L, Neskovic AN, Parodi G, Cerisano G, Buonamici P, Santoro GM, Antoniucci D (2002) Left ventricular remodeling after primary coronary angioplasty: patterns of left ventricular dilation and long-term prognostic implications. Circulation 106(18):2351–2357

    Article  PubMed  Google Scholar 

  9. Mourouzis I, Politi E, Pantos C (2013) Thyroid hormone and tissue repair: new tricks for an old hormone? J Thyroid Res 2013:312104. doi:10.1155/2013/312104

    Article  PubMed Central  PubMed  Google Scholar 

  10. Pantos C, Mourouzis I, Cokkinos DV (2012) Thyroid hormone and cardiac repair/regeneration: from Prometheus myth to reality? Can J Physiol Pharmacol 90(8):977–987. doi:10.1139/y2012-031

    Article  CAS  PubMed  Google Scholar 

  11. De Groot LJ (2006) Non-thyroidal illness syndrome is a manifestation of hypothalamic-pituitary dysfunction, and in view of current evidence, should be treated with appropriate replacement therapies. Crit Care Clin 22(1):57–86. doi:10.1016/j.ccc.2005.10.001

    Article  PubMed  Google Scholar 

  12. Lazzeri C, Sori A, Picariello C, Chiostri M, Gensini GF, Valente S (2012) Nonthyroidal illness syndrome in ST-elevation myocardial infarction treated with mechanical revascularization. Int J Cardiol 158(1):103–104. doi:10.1016/j.ijcard.2012.03.100

    Article  PubMed  Google Scholar 

  13. Stathatos N, Levetan C, Burman KD, Wartofsky L (2001) The controversy of the treatment of critically ill patients with thyroid hormone. Best Pract Res Clin Endocrinol Metab 15(4):465–478. doi:10.1053/beem.2001.0164

    Article  CAS  PubMed  Google Scholar 

  14. Lymvaios I, Mourouzis I, Cokkinos DV, Dimopoulos MA, Toumanidis ST, Pantos C (2011) Thyroid hormone and recovery of cardiac function in patients with acute myocardial infarction: a strong association? Eur J Endocrinol 165(1):107–114. doi:10.1530/EJE-11-0062

    Article  CAS  PubMed  Google Scholar 

  15. Chuang CP, Jong YS, Wu CY, Lo HM (2014) Impact of triiodothyronine and N-terminal pro-B-type natriuretic peptide on the long-term survival of critically ill patients with acute heart failure. Am J Cardiol 113(5):845–850. doi:10.1016/j.amjcard.2013.11.039

    Article  CAS  PubMed  Google Scholar 

  16. Pingitore A, Landi P, Taddei MC, Ripoli A, L’Abbate A, Iervasi G (2005) Triiodothyronine levels for risk stratification of patients with chronic heart failure. Am J Med 118(2):132–136

    Article  CAS  PubMed  Google Scholar 

  17. Fontana M, Passino C, Poletti R, Zyw L, Prontera C, Scarlattini M, Clerico A, Emdin M, Iervasi G (2012) Low triiodothyronine and exercise capacity in heart failure. Int J Cardiol 154(2):153–157. doi:10.1016/j.ijcard.2010.09.002

    Article  PubMed  Google Scholar 

  18. Pantos C, Dritsas A, Mourouzis I, Dimopoulos A, Karatasakis G, Athanassopoulos G, Mavrogeni S, Manginas A, Cokkinos DV (2007) Thyroid hormone is a critical determinant of myocardial performance in patients with heart failure: potential therapeutic implications. Eur J Endocrinol 157(4):515–520

    Article  CAS  PubMed  Google Scholar 

  19. Selvaraj S, Klein I, Danzi S, Akhter N, Bonow RO, Shah SJ (2012) Association of serum triiodothyronine with B-type natriuretic peptide and severe left ventricular diastolic dysfunction in heart failure with preserved ejection fraction. Am J Cardiol 110(2):234–239. doi:10.1016/j.amjcard.2012.02.068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kaptein EM, Sanchez A, Beale E, Chan LS (2010) Clinical review: thyroid hormone therapy for postoperative nonthyroidal illnesses: a systematic review and synthesis. J Clin Endocrinol Metab 95(10):4526–4534

    Article  CAS  PubMed  Google Scholar 

  21. Ranasinghe AM, Quinn DW, Pagano D, Edwards N, Faroqui M, Graham TR, Keogh BE, Mascaro J, Riddington DW, Rooney SJ, Townend JN, Wilson IC, Bonser RS (2006) Glucose–insulin–potassium and tri-iodothyronine individually improve hemodynamic performance and are associated with reduced troponin I release after on-pump coronary artery bypass grafting. Circulation 114(1 Suppl):I245–I250

    PubMed  Google Scholar 

  22. Sirlak M, Yazicioglu L, Inan MB, Eryilmaz S, Tasoz R, Aral A, Ozyurda U (2004) Oral thyroid hormone pretreatment in left ventricular dysfunction. Eur J Cardiothorac Surg 26(4):720–725

    Article  PubMed  Google Scholar 

  23. Macdonald PS, Aneman A, Bhonagiri D, Jones D, O’Callaghan G, Silvester W, Watson A, Dobb G (2012) A systematic review and meta-analysis of clinical trials of thyroid hormone administration to brain dead potential organ donors. Crit Care Med 40(5):1635–1644. doi:10.1097/CCM.0b013e3182416ee7

    Article  CAS  PubMed  Google Scholar 

  24. Jeevanandam V (1997) Triiodothyronine: spectrum of use in heart transplantation. Thyroid 7(1):139–145

    Article  CAS  PubMed  Google Scholar 

  25. Novitzky D, Cooper DK (2014) Thyroid hormones and the stunned myocardium. J Endocrinol. doi:10.1530/JOE-14-0389

    PubMed  Google Scholar 

  26. Novitzky D, Mi Z, Sun Q, Collins J, Cooper DK (2014) Thyroid hormone therapy in the management of 63,593 brain-dead organ donors: a retrospective review. Transplantation 98(10):1119–1127. doi:10.1097/TP.0000000000000187

  27. Hamilton MA, Stevenson LW, Fonarow GC, Steimle A, Goldhaber JI, Child JS, Chopra IJ, Moriguchi JD, Hage A (1998) Safety and hemodynamic effects of intravenous triiodothyronine in advanced congestive heart failure. Am J Cardiol 81(4):443–447

    Article  CAS  PubMed  Google Scholar 

  28. Moruzzi P, Doria E, Agostoni PG (1996) Medium-term effectiveness of L-thyroxine treatment in idiopathic dilated cardiomyopathy. Am J Med 101(5):461–467

    Article  CAS  PubMed  Google Scholar 

  29. Moruzzi P, Doria E, Agostoni PG, Capacchione V, Sganzerla P (1994) Usefulness of L-thyroxine to improve cardiac and exercise performance in idiopathic dilated cardiomyopathy. Am J Cardiol 73(5):374–378

    Article  CAS  PubMed  Google Scholar 

  30. Pingitore A, Galli E, Barison A, Iervasi A, Scarlattini M, Nucci D, L’Abbate A, Mariotti R, Iervasi G (2008) Acute effects of triiodothyronine (T3) replacement therapy in patients with chronic heart failure and low-T3 syndrome: a randomized, placebo-controlled study. J Clin Endocrinol Metab 93(4):1351–1358

    Article  CAS  PubMed  Google Scholar 

  31. Pantos C, Mourouzis I, Cokkinos DV (2010) Thyroid hormone as a therapeutic option for treating ischaemic heart disease: from early reperfusion to late remodelling. Vascul Pharmacol 52(3–4):157–165

    Article  CAS  PubMed  Google Scholar 

  32. Pantos C, Mourouzis I, Xinaris C, Papadopoulou-Daifoti Z, Cokkinos D (2008) Thyroid hormone and “cardiac metamorphosis”: potential therapeutic implications. Pharmacol Ther 118(2):277–294

    Article  CAS  PubMed  Google Scholar 

  33. Pantos C, Malliopoulou V, Mourouzis I, Karamanoli E, Moraitis P, Tzeis S, Paizis I, Cokkinos AD, Carageorgiou H, Varonos DD, Cokkinos DV (2003) Thyroxine pretreatment increases basal myocardial heat-shock protein 27 expression and accelerates translocation and phosphorylation of this protein upon ischaemia. Eur J Pharmacol 478(1):53–60

    Article  CAS  PubMed  Google Scholar 

  34. Pantos C, Malliopoulou V, Mourouzis I, Thempeyioti A, Paizis I, Dimopoulos A, Saranteas T, Xinaris C, Cokkinos DV (2006) Hyperthyroid hearts display a phenotype of cardioprotection against ischemic stress: a possible involvement of heat shock protein 70. Horm Metab Res 38(5):308–313. doi:10.1055/s-2006-925404

    Article  CAS  PubMed  Google Scholar 

  35. Pantos C, Malliopoulou V, Paizis I, Moraitis P, Mourouzis I, Tzeis S, Karamanoli E, Cokkinos DD, Carageorgiou H, Varonos D, Cokkinos DV (2003) Thyroid hormone and cardioprotection: study of p38 MAPK and JNKs during ischaemia and at reperfusion in isolated rat heart. Mol Cell Biochem 242(1–2):173–180

    Article  CAS  PubMed  Google Scholar 

  36. Pantos C, Mourouzis I, Cokkinos DV (2011) New insights into the role of thyroid hormone in cardiac remodeling: time to reconsider? Heart Fail Rev 16(1):79–96. doi:10.1007/s10741-010-9185-3

    Article  CAS  PubMed  Google Scholar 

  37. Pantos C, Mourouzis I, Saranteas T, Brozou V, Galanopoulos G, Kostopanagiotou G, Cokkinos DV (2011) Acute T3 treatment protects the heart against ischemia–reperfusion injury via TRα1 receptor. Mol Cell Biochem 353(1-2):235–241. doi:10.1007/s11010-011-0791-8

    Article  CAS  PubMed  Google Scholar 

  38. Pantos C, Mourouzis I, Saranteas T, Clave G, Ligeret H, Noack-Fraissignes P, Renard PY, Massonneau M, Perimenis P, Spanou D, Kostopanagiotou G, Cokkinos DV (2009) Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: a new therapeutic approach to support hemodynamics in the setting of ischaemia–reperfusion? Basic Res Cardiol 104(1):69–77

    Article  CAS  PubMed  Google Scholar 

  39. Suarez J, Wang H, Scott BT, Ling H, Makino A, Swanson E, Brown JH, Suarez JA, Feinstein S, Diaz-Juarez J, Dillmann WH (2014) In vivo selective expression of thyroid hormone receptor aplha1 in endothelial cells attenuates myocardial injury in experimental myocardial infarction in mice. Am J Physiol Regul Integr Comp Physiol 307(3):R340–R346. doi:10.1152/ajpregu.00449.2013

    Article  CAS  PubMed  Google Scholar 

  40. Chen YF, Kobayashi S, Chen J, Redetzke RA, Said S, Liang Q, Gerdes AM (2008) Short term triiodo-L-thyronine treatment inhibits cardiac myocyte apoptosis in border area after myocardial infarction in rats. J Mol Cell Cardiol 44(1):180–187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Forini F, Kusmic C, Nicolini G, Mariani L, Zucchi R, Matteucci M, Iervasi G, Pitto L (2014) Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis. Endocrinology. doi:10.1210/en.2014-1106

    PubMed  Google Scholar 

  42. Pantos CI, Malliopoulou VA, Mourouzis IS, Karamanoli EP, Paizis IA, Steimberg N, Varonos DD, Cokkinos DV (2002) Long-term thyroxine administration protects the heart in a pattern similar to ischemic preconditioning. Thyroid 12(4):325–329

    Article  CAS  PubMed  Google Scholar 

  43. Pantos CI, Malliopoulou VA, Mourouzis IS, Karamanoli EP, Tzeis SM, Carageorgiou HC, Varonos DD, Cokkinos DV (2001) Long-term thyroxine administration increases heat stress protein-70 mRNA expression and attenuates p38 MAP kinase activity in response to ischaemia. J Endocrinol 170(1):207–215

    Article  CAS  PubMed  Google Scholar 

  44. Kapoor MC (2014) Phenylephrine in cardiac surgery: will it have a place? Ann Card Anaesth 17(3):209–210

    Article  PubMed  Google Scholar 

  45. Mourouzis I, Saranteas T, Ligeret H, Portal C, Perimenis P, Pantos C (2014) Phenylephrine postconditioning increases myocardial injury: are alpha-1 sympathomimetic agonist cardioprotective? Ann Card Anaesth 17(3):200–209. doi:10.4103/0971-9784.135850

    Article  PubMed  Google Scholar 

  46. Pantos C, Mourouzis I, Tzeis S, Moraitis P, Malliopoulou V, Cokkinos DD, Carageorgiou H, Varonos D, Cokkinos D (2003) Dobutamine administration exacerbates postischaemic myocardial dysfunction in isolated rat hearts: an effect reversed by thyroxine pretreatment. Eur J Pharmacol 460(2–3):155–161

    Article  CAS  PubMed  Google Scholar 

  47. Jonassen AK, Sack MN, Mjos OD, Yellon DM (2001) Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 89(12):1191–1198

    Article  CAS  PubMed  Google Scholar 

  48. Sato T, Sato H, Oguchi T, Fukushima H, Carvalho G, Lattermann R, Matsukawa T, Schricker T (2014) Insulin preconditioning elevates p-Akt and cardiac contractility after reperfusion in the isolated ischemic rat heart. Biomed Res Int 2014:536510. doi:10.1155/2014/536510

    Article  PubMed Central  PubMed  Google Scholar 

  49. Pantos C, Mourouzis I, Cokkinos DV (2010) New insights into the role of thyroid hormone in cardiac remodeling: time to reconsider? Heart Fail Rev 16(1):79–96

    Article  Google Scholar 

  50. Pantos C, Mourouzis I, Cokkinos DV (2010) Rebuilding the post-infarcted myocardium by activating ‘physiologic’ hypertrophic signaling pathways: the thyroid hormone paradigm. Heart Fail Rev 15(2):143–154

    Article  CAS  PubMed  Google Scholar 

  51. Kalofoutis C, Mourouzis I, Galanopoulos G, Dimopoulos A, Perimenis P, Spanou D, Cokkinos DV, Singh J, Pantos C (2010) Thyroid hormone can favorably remodel the diabetic myocardium after acute myocardial infarction. Mol Cell Biochem 345(1–2):161–169

    Article  CAS  PubMed  Google Scholar 

  52. Mourouzis I, Giagourta I, Galanopoulos G, Mantzouratou P, Kostakou E, Kokkinos AD, Tentolouris N, Pantos C (2013) Thyroid hormone improves the mechanical performance of the post-infarcted diabetic myocardium: a response associated with up-regulation of Akt/mTOR and AMPK activation. Metabolism 62(10):1387–1393. doi:10.1016/j.metabol.2013.05.008

    Article  CAS  PubMed  Google Scholar 

  53. Mourouzis I, Mantzouratou P, Galanopoulos G, Kostakou E, Roukounakis N, Kokkinos AD, Cokkinos DV, Pantos C (2012) Dose dependent effects of thyroid hormone on post-ischaemic cardiac performance: potential involvement of Akt and ERK signaling. Mol Cell Biochem 363(1–2):235–243

    Article  CAS  PubMed  Google Scholar 

  54. Pantos C, Mourouzis I, Markakis K, Dimopoulos A, Xinaris C, Kokkinos AD, Panagiotou M, Cokkinos DV (2007) Thyroid hormone attenuates cardiac remodeling and improves hemodynamics early after acute myocardial infarction in rats. Eur J Cardiothorac Surg 32(2):333–339

    Article  PubMed  Google Scholar 

  55. Pantos C, Mourouzis I, Markakis K, Tsagoulis N, Panagiotou M, Cokkinos DV (2008) Long-term thyroid hormone administration reshapes left ventricular chamber and improves cardiac function after myocardial infarction in rats. Basic Res Cardiol 103(4):308–318

    Article  CAS  PubMed  Google Scholar 

  56. Pantos C, Mourouzis I, Tsagoulis N, Markakis K, Galanopoulos G, Roukounakis N, Perimenis P, Liappas A, Cokkinos DV (2009) Thyroid hormone at supra-physiological dose optimizes cardiac geometry and improves cardiac function in rats with old myocardial infarction. J Physiol Pharmacol 60(3):49–56

    CAS  PubMed  Google Scholar 

  57. MaMa L, Kerr BA, Naga Prasad SV, Byzova TV, Somanath PR (2014) Differential effects of Akt1 signaling on short- versus long-term consequences of myocardial infarction and reperfusion injury. Lab Invest. doi:10.1038/labinvest.2014.95

    Google Scholar 

  58. Sallin EA (1969) Fiber orientation and ejection fraction in the human left ventricle. Biophys J 9(7):954–964. doi:10.1016/S0006-3495(69)86429-5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Donahoe SM, Stewart GC, McCabe CH, Mohanavelu S, Murphy SA, Cannon CP, Antman EM (2007) Diabetes and mortality following acute coronary syndromes. JAMA 298(7):765–775. doi:10.1001/jama.298.7.765

    Article  CAS  PubMed  Google Scholar 

  60. Jacoby RM, Nesto RW (1992) Acute myocardial infarction in the diabetic patient: pathophysiology, clinical course and prognosis. J Am Coll Cardiol 20(3):736–744

    Article  CAS  PubMed  Google Scholar 

  61. Howell NJ, Ashrafian H, Drury NE, Ranasinghe AM, Contractor H, Isackson H, Calvert M, Williams LK, Freemantle N, Quinn DW, Green D, Frenneaux M, Bonser RS, Mascaro JG, Graham TR, Rooney SJ, Wilson IC, Pagano D (2011) Glucose–insulin–potassium reduces the incidence of low cardiac output episodes after aortic valve replacement for aortic stenosis in patients with left ventricular hypertrophy: results from the hypertrophy, insulin, glucose, and electrolytes (HINGE) trial. Circulation 123(2):170–177. doi:10.1161/CIRCULATIONAHA.110.945170

    Article  CAS  PubMed  Google Scholar 

  62. Ji L, Zhang X, Liu W, Huang Q, Yang W, Fu F, Ma H, Su H, Wang H, Wang J, Zhang H, Gao F (2013) AMPK-regulated and Akt-dependent enhancement of glucose uptake is essential in ischemic preconditioning-alleviated reperfusion injury. PLoS One 8(7):e69910. doi:10.1371/journal.pone.0069910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Pantos C, Xinaris C, Mourouzis I, Perimenis P, Politi E, Spanou D, Cokkinos DV (2008) Thyroid hormone receptor alpha 1: a switch to cardiac cell “metamorphosis”? J Physiol Pharmacol 59(2):253–269

    CAS  PubMed  Google Scholar 

  64. Pantos C, Mourouzis I, Galanopoulos G, Gavra M, Perimenis P, Spanou D, Cokkinos DV (2010) Thyroid hormone receptor alpha1 downregulation in postischemic heart failure progression: the potential role of tissue hypothyroidism. Horm Metab Res 42(10):718–724

    Article  CAS  PubMed  Google Scholar 

  65. Mourouzis I, Kostakou E, Galanopoulos G, Mantzouratou P, Pantos C (2013) Inhibition of thyroid hormone receptor alpha1 impairs post-ischemic cardiac performance after myocardial infarction in mice. Mol Cell Biochem 379(1–2):97–105. doi:10.1007/s11010-013-1631-9

    Article  CAS  PubMed  Google Scholar 

  66. Mai W, Janier MF, Allioli N, Quignodon L, Chuzel T, Flamant F, Samarut J (2004) Thyroid hormone receptor alpha is a molecular switch of cardiac function between fetal and postnatal life. Proc Natl Acad Sci USA 101(28):10332–10337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Vose LR, Vinukonda G, Jo S, Miry O, Diamond D, Korumilli R, Arshad A, Zia MT, Hu F, Kayton RJ, La Gamma EF, Bansal R, Bianco AC, Ballabh P (2013) Treatment with thyroxine restores myelination and clinical recovery after intraventricular hemorrhage. J Neurosci 33(44):17232–17246. doi:10.1523/JNEUROSCI.2713-13.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Adamopoulos S, Gouziouta A, Mantzouratou P, Laoutaris ID, Dritsas A, Cokkinos DV, Mourouzis I, Sfyrakis P, Iervasi G, Pantos C (2013) Thyroid hormone signalling is altered in response to physical training in patients with end-stage heart failure and mechanical assist devices: potential physiological consequences? Interact CardioVasc Thorac Surg 17(4):664–668. doi:10.1093/icvts/ivt294

    Article  PubMed Central  PubMed  Google Scholar 

  69. Pantos C, Mourouzis I (2014) The emerging role of TRalpha1 in cardiac repair: potential therapeutic implications. Oxid Med Cell Longev 2014:481482. doi:10.1155/2014/481482

    Article  PubMed Central  PubMed  Google Scholar 

  70. Pantos C, Xinaris C, Mourouzis I, Malliopoulou V, Kardami E, Cokkinos DV (2007) Thyroid hormone changes cardiomyocyte shape and geometry via ERK signaling pathway: potential therapeutic implications in reversing cardiac remodeling? Mol Cell Biochem 297(1–2):65–72

    Article  CAS  PubMed  Google Scholar 

  71. Naqvi N, Li M, Calvert JW, Tejada T, Lambert JP, Wu J, Kesteven SH, Holman SR, Matsuda T, Lovelock JD, Howard WW, Iismaa SE, Chan AY, Crawford BH, Wagner MB, Martin DI, Lefer DJ, Graham RM, Husain A (2014) A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell 157(4):795–807. doi:10.1016/j.cell.2014.03.035

    Article  CAS  PubMed  Google Scholar 

  72. Li M, Iismaa SE, Naqvi N, Nicks A, Husain A, Graham RM (2014) Thyroid hormone action in postnatal heart development. Stem Cell Res. doi:10.1016/j.scr.2014.07.001

    Google Scholar 

  73. van der Heide SM, Joosten BJ, Dragt BS, Everts ME, Klaren PH (2007) A physiological role for glucuronidated thyroid hormones: preferential uptake by H9c2(2-1) myotubes. Mol Cell Endocrinol 264(1–2):109–117. doi:10.1016/j.mce.2006.10.012

    Article  PubMed  Google Scholar 

  74. van der Putten HH, Joosten BJ, Klaren PH, Everts ME (2002) Uptake of tri-iodothyronine and thyroxine in myoblasts and myotubes of the embryonic heart cell line H9c2(2-1). J Endocrinol 175(3):587–596

    Article  PubMed  Google Scholar 

  75. Hellen N, Wheeler J, Pinto Riccardo C, Foldes G, Kodagoda T, Whiting G, Mioulane M, Terracciano C, Vauchez K, Harding S (2014) Effect of T3 on human induced pluripotent stem cell-derived cardiomyocyte maturation. Cardiovasc Res 103(1):S62

    Article  Google Scholar 

  76. Ivashchenko CY, Pipes GC, Lozinskaya IM, Lin Z, Xiaoping X, Needle S, Grygielko ET, Hu E, Toomey JR, Lepore JJ, Willette RN (2013) Human-induced pluripotent stem cell-derived cardiomyocytes exhibit temporal changes in phenotype. Am J Physiol Heart Circ Physiol 305(6):H913–H922. doi:10.1152/ajpheart.00819.2012

    Article  CAS  PubMed  Google Scholar 

  77. Liappas A, Mourouzis I, Zisakis A, Economou K, Lea R-W, Pantos C (2011) Cell type dependent thyroid hormone effects on glioma tumor cell lines. J Thyroid Res 2011:856050. doi:10.4061/2011/856050

  78. Tacon CL, McCaffrey J, Delaney A (2011) Dobutamine for patients with severe heart failure: a systematic review and meta-analysis of randomised controlled trials. Intensive Care Med 38(3):359–367. doi:10.1007/s00134-011-2435-6

    Article  PubMed  Google Scholar 

  79. Zaroff JG, Rosengard BR, Armstrong WF, Babcock WD, D’Alessandro A, Dec GW, Edwards NM, Higgins RS, Jeevanandum V, Kauffman M, Kirklin JK, Large SR, Marelli D, Peterson TS, Ring WS, Robbins RC, Russell SD, Taylor DO, Van Bakel A, Wallwork J, Young JB (2002) Consensus conference report: maximizing use of organs recovered from the cadaver donor: cardiac recommendations, March 28–29, 2001, Crystal City. Va. Circulation 106(7):836–841

    Article  Google Scholar 

  80. Gerdes AM, Iervasi G (2010) Thyroid replacement therapy and heart failure. Circulation 122(4):385–393. doi:10.1161/CIRCULATIONAHA.109.917922

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The described work was partly supported by Greek Secretariat of Research and Development (ESPA SYNERGASIA 09ΣΥΝ-21-965).

Conflict of interest

Dr. Constantinos Pantos and Dr. Iordanis Mourouzis have no conflict of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos Pantos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pantos, C., Mourouzis, I. Translating thyroid hormone effects into clinical practice: the relevance of thyroid hormone receptor α1 in cardiac repair. Heart Fail Rev 20, 273–282 (2015). https://doi.org/10.1007/s10741-014-9465-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-014-9465-4

Keywords

Navigation