Skip to main content
Log in

Conflicting effects of nitric oxide and oxidative stress in chronic heart failure: potential therapeutic strategies

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Chronic heart failure (CHF) is characterized by decreased nitric oxide (NO) bioavailability. In addition, the beneficial NO turns to be deleterious when it reacts with superoxide anion, leading to peroxynitrite formation. Numerous experimental and clinical studies have reported increased production of reactive oxygen species (superoxide, hydrogen peroxide, hydroxyl radical) both in animals and patients with CHF. Moreover, there are indicative data suggesting mechanisms associated with endothelial dysfunction in states of CHF, mainly attributed to decreased NO bioavailability and enhanced inactivation of the latter. Thus, such molecules appear to be potential targets in patients with CHF. These patients are strong candidates to receive a variety of therapeutic agents, some of which have known antioxidant effects. Classic treatment with statins or angiotensin converting enzyme inhibitors has been found to be beneficial in restoring NO and improving myocardial function and structure. Other agents such as sildenafil and b-blockers along with novel agents such as NO synthase transcription enhancers have been proved to be also beneficial, but their use for such a purpose is still controversial. Approaches using more-effective antioxidants or targeting myocardial oxidant-producing enzymes and oxidative or nitrosative stress might be promising strategies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lip G, Gibbs C, Beevers D (2000) ABC of heart failure: aetiology. BMJ 320:104–107. doi:10.1136/bmj.320.7227.104

    Article  PubMed  CAS  Google Scholar 

  2. Jackson G, Gibbs CR, Davies MK, Lip GY (2000) ABC of heart failure. Pathophysiology. BMJ 320:167–170. doi:10.1136/bmj.320.7228.167

    Article  PubMed  CAS  Google Scholar 

  3. Cotton JM, Kearney MT, Shah AM (2002) Nitric oxide and myocardial function in heart failure: friend or foe? Heart 88:564–566

    Article  PubMed  CAS  Google Scholar 

  4. Elahi MM, Naseem KM, Matata BM (2007) Nitric oxide in blood. The nitrosative-oxidative disequilibrium hypothesis on the pathogenesis of cardiovascular disease. FEBS J 274:906–923. doi:10.1111/j.1742-4658.2007.05660.x

    Article  PubMed  CAS  Google Scholar 

  5. Pacher P, Liaudet L, Mabley J, Komjáti K, Szabó C (2002) Pharmacologic inhibition of poly(adenosine diphosphate-ribose) polymerase may represent a novel therapeutic approach in chronic heart failure. J Am Coll Cardiol 40:1006–1016. doi:10.1016/S0735-1097(02)02062-4

    Article  PubMed  CAS  Google Scholar 

  6. Nediani C, Raimondi L, Borchi E, Cerbai E (2010) NO/ROS generation and nitroso/redox imbalance in heart failure: from molecular mechanisms to therapeutic implications. Antioxid Redox Signal Jul 12 [Epub ahead of print]. doi:10.1089/ars.2010.3198

  7. Kuroda J, Sadoshima J (2010) NADPH oxidase and cardiac failure. J Cardiovasc Transl Res 3:314–320. doi:10.1007/s12265-010-9184-8

    Article  PubMed  Google Scholar 

  8. Gao L, Wang W, Li YL, Schultz HD, Liu D, Cornish KG, Zucker IH (2005) Simvastatin therapy normalizes sympathetic neural control in experimental heart failure: roles of angiotensin II type 1 receptors and NAD(P)H oxidase. Circulation 112:1763–1770. doi:10.1161/CIRCULATIONAHA.105.552174

    Article  PubMed  CAS  Google Scholar 

  9. Cheng G, Xu G, Cai HW, Wang HH, Bao XF (2007) Effect of atorvastatin on non-ischemic heart failure and matrix metalloproteinase-2 and 9 in rats. Acta Pharmacol Sin 28:511–517. doi:10.1111/j.1745-7254.2007.00515.x

    Article  PubMed  CAS  Google Scholar 

  10. Tousoulis D, Charakida M, Stefanadi E, Siasos G, Latsios G, Stefanadis C (2007) Statins in heart failure. Beyond the lipid lowering effect. Int J Cardiol 115:144–150. doi:10.1016/j.ijcard.2006.03.094

    Article  PubMed  Google Scholar 

  11. Pacca SR, de Azevedo AP, De Oliveira CF, De Luca IM, De Nucci G, Antunes E (2002) Attenuation of hypertension, cardiomyocyte hypertrophy, and myocardial fibrosis by beta-adrenoceptor blockers in rats under long-term blockade of nitric oxide synthesis. J Cardiovasc Pharmacol 39:201–207

    Article  PubMed  CAS  Google Scholar 

  12. Schäfer A, Fraccarollo D, Tas P, Schmidt I, Ertl G, Bauersachs J (2004) Endothelial dysfunction in congestive heart failure: ACE inhibition vs. angiotensin II antagonism. Eur J Heart Fail 6:151–159. doi:10.1016/j.ejheart.2003.10.009

    Article  PubMed  CAS  Google Scholar 

  13. Guzik TJ, West NE, Pillai R, Taggart DP, Channon KM (2002) Nitric oxide modulates superoxide release and peroxynitrite formation in human blood vessels. Hypertension 39:1088–1094. doi:10.1161/01.HYP.0000018041.48432.B5

    Article  PubMed  CAS  Google Scholar 

  14. Pacher P, Szabó C (2006) Role of peroxynitrite in the pathogenesis of cardiovascular complications of diabetes. Curr Opin Pharmacol 6:136–141. doi:10.1016/j.coph.2006.01.001

    Article  PubMed  CAS  Google Scholar 

  15. Hayashi Y, Sawa Y, Nishimura M, Fukuyama N, Ichikawa H, Ohtake S, Nakazawa H, Matsuda H (2004) Peroxynitrite, a product between nitric oxide and superoxide anion, plays a cytotoxic role in the development of post-bypass systemic inflammatory response. Eur J Cardiothorac Surg 26:276–280. doi:10.1016/j.ejcts.2004.03.033

    Article  PubMed  Google Scholar 

  16. Pacher P, Schulz R, Liaudet L, Szabo C (2005) Nitrosative stress and pharmacological modulation of heart failure. Trends Pharmacol Sci 26:302–310. doi:10.1016/j.tips.2005.04.003

    Article  PubMed  CAS  Google Scholar 

  17. Levrand S, Vannay-Bouchiche C, Pesse B, Pacher P, Feihl F, Waeber B, Liaudet L (2006) Peroxynitrite is a major trigger of cardiomyocyte apoptosis in vitro and in vivo. Free Radic Biol Med 41:886–895. doi:10.1016/j.freeradbiomed.2006.04.034

    Article  PubMed  CAS  Google Scholar 

  18. Pacher P, Szabo C (2008) Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. Am J Pathol 173:2–13. doi:10.2353/ajpath.2008.080019

    Article  PubMed  CAS  Google Scholar 

  19. Bartha E, Solti I, Kereskai L et al (2009) PARP inhibition delays transition of hypertensive cardiopathy to heart failure in spontaneously hypertensive rats. Cardiovasc Res 83:501–510. doi:10.1093/cvr/cvp144

    Article  PubMed  CAS  Google Scholar 

  20. Ungvári Z, Gupte SA, Recchia FA, Bátkai S, Pacher P (2005) Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol 3:221–229

    Article  PubMed  Google Scholar 

  21. Cesselli D, Jakoniuk I, Barlucchi L, Beltrami AP, Hintze TH, Nadal-Ginard B, Kajstura J, Leri A, Anversa P (2001) Oxidative stress-mediated cardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. Circ Res 89:279–286. doi:10.1161/hh1501.094115

    Article  PubMed  CAS  Google Scholar 

  22. Hare JM, Stamler JS (2005) NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest 115:509–517. doi:10.1172/JCI200524459

    PubMed  CAS  Google Scholar 

  23. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424. doi:10.1152/physrev.00029.2006

    Article  PubMed  CAS  Google Scholar 

  24. Tentolouris C, Tousoulis D, Antoniades C, Bosinakou E, Kotsopoulou M, Trikas A, Toutouzas P, Stefanadis C (2004) Endothelial function and proinflammatory cytokines in patients with ischemic heart disease and dilated cardiomyopathy. Int J Cardiol 94:301–305. doi:10.1016/j.ijcard.2003.08.002

    Article  PubMed  Google Scholar 

  25. Tousoulis D, Homaei H, Ahmed N, Asimakopoulos G, Zouridakis E, Toutouzas P, Davies GJ (2001) Increased plasma adhesion molecule levels in patients with heart failure who have ischemic heart disease and dilated cardiomyopathy. Am Heart J 141:277–280. doi:10.1067/mhj.2001.112683

    Article  PubMed  CAS  Google Scholar 

  26. Ide T, Tsutsui H, Kinugawa S, Suematsu N, Hayashidani S, Ichikawa K, Utsumi H, Machida Y, Egashira K, Takeshita A (2000) Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ Res 86:152–157

    PubMed  CAS  Google Scholar 

  27. Sam F, Kerstetter DL, Pimental DR, Mulukutla S, Tabaee A, Bristow MR, Colucci WS, Sawyer DB (2005) Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. J Cardiac Fail 11:473–480. doi:10.1016/j.cardfail.2005.01.007

    Article  CAS  Google Scholar 

  28. Tsutsui H, Ide T, Hayashidani S, Suematsu N, Utsumi H, Nakamura R, Egashira K, Takeshita A (2001) Greater susceptibility of failing cardiac myocytes to oxygen free radical-mediated injury. Cardiovasc Res 49:103–109. doi:10.1016/S0008-6363(00)00197-8

    Article  PubMed  CAS  Google Scholar 

  29. Tsutsui H, Kinugawa S, Matsushima S (2009) Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res 81:449–456. doi:10.1093/cvr/cvn280

    Article  PubMed  CAS  Google Scholar 

  30. Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N, Uchida K, Arimura K, Egashira K, Takeshita A (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85:357–363

    PubMed  CAS  Google Scholar 

  31. Bergamini C, Cicoira M, Rossi A, Vassanelli C (2009) Oxidative stress and hyperuricaemia: pathophysiology, clinical relevance, and therapeutic implications in chronic heart failure. Eur J Heart Fail 11:444–452. doi:10.1093/eurjhf/hfp042

    Article  PubMed  CAS  Google Scholar 

  32. Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE, Harrison DG (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111:1201–1209. doi:10.1172/JCI200314172

    PubMed  CAS  Google Scholar 

  33. Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G, Shah AM (2003) Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 41:2164–2171. doi:10.1016/S0735-1097(03)00471-6

    Article  PubMed  CAS  Google Scholar 

  34. Akki A, Zhang M, Murdoch C, Brewer A, Shah AM (2009) NADPH oxidase signaling and cardiac myocyte function. J Mol Cell Cardiol 47:15–22. doi:10.1016/j.yjmcc.2009.04.004

    Article  PubMed  CAS  Google Scholar 

  35. Nojiri H, Shimizu T, Funakoshi M, Yamaguchi O, Zhou H, Kawakami S, Ohta Y, Sami M, Tachibana T, Ishikawa H, Kurosawa H, Kahn RC, Otsu K, Shirasawa T (2006) Oxidative stress causes heart failure with impaired mitochondrial respiration. J Biol Chem 281:33789–33801. doi:10.1074/jbc.M602118200

    Article  PubMed  CAS  Google Scholar 

  36. McNally JS, Saxena A, Cai H, Dikalov S, Harrison DG (2005) Regulation of xanthine oxidoreductase protein expression by hydrogen peroxide and calcium. Arterioscl Thromb Vasc Biol 25:1623–1628. doi:10.1161/01.ATV.0000170827.16296.6e

    Article  PubMed  CAS  Google Scholar 

  37. Landmesser U, Spiekermann S, Dikalov S, Tatge H, Wilke R, Kohler C, Harrison DG, Hornig B, Drexler H (2002) Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase. Circulation 106:3073–3078. doi:10.1161/01.CIR.0000041431.57222.AF

    Article  PubMed  CAS  Google Scholar 

  38. Indik JH, Goldman S, Gaballa MA (2001) Oxidative stress contributes to vascular endothelial dysfunction in heart failure. Am J Physiol Heart Circ Physiol 281:H1767–H1770

    PubMed  CAS  Google Scholar 

  39. Keith M, Geranmayegan A, Sole MJ, Kurian R, Robinson A, Omran AS, Jeejeebhoy KN (1998) Increased oxidative stress in patients with congestive heart failure. J Am Coll Cardiol 31:1352–1356. doi:10.1016/S0735-1097(98)00101-6

    Article  PubMed  CAS  Google Scholar 

  40. Tousoulis D, Charakida M, Stefanadis C (2005) Inflammation and endothelial dysfunction as therapeutic targets in patients with heart failure. Int J Cardiol 100:347–353. doi:10.1016/j.ijcard.2004.05.030

    Article  PubMed  Google Scholar 

  41. Andreou I, Tousoulis D, Tentolouris C, Antoniades C, Stefanadis C (2006) Potential role of endothelial progenitor cells in the pathophysiology of heart failure: clinical implications and perspectives. Atherosclerosis 189:247–254. doi:10.1016/j.atherosclerosis.2006.06.021

    Article  PubMed  CAS  Google Scholar 

  42. Drexler H, Hayoz D, Munzel T, Hornig B, Just H, Brunner HR, Zelis R (1992) Endothelial function in chronic congestive heart failure. Am J Cardiol 69:1596–1601. doi:10.1016/0002-9149(92)90710-G

    Article  PubMed  CAS  Google Scholar 

  43. Arnold JM, Marchiori GE, Imrie JR, Burton GL, Pflugfelder PW, Kostuk WJ (1991) Large artery function in patients with chronic heart failure. Studies of brachial artery diameter and hemodynamics. Circulation 84:2418–2425

    PubMed  CAS  Google Scholar 

  44. Heymes C, Vanderheyden M, Bronzwaer JG, Shah AM, Paulus WJ (1999) Endomyocardial nitric oxide synthase and left ventricular preload reserve in dilated cardiomyopathy. Circulation 99:3009–3016

    PubMed  CAS  Google Scholar 

  45. Cotton JM, Kearney MT, MacCarthy PA, Grocott-Mason RM, McClean DR, Heymes C, Richardson PJ, Shah AM (2001) Effects of nitric oxide synthase inhibition on basal function and the force-frequency relationship in the normal and failing human heart in vivo. Circulation 104:2318–2323. doi:10.1161/hc4401.098515

    Article  PubMed  CAS  Google Scholar 

  46. Recchia FA, McConnell PI, Bernstein RD, Vogel TR, Xu X, Hintze TH (1998) Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog. Circ Res 83:969–979

    PubMed  CAS  Google Scholar 

  47. Pacher P, Nivorozhkin A, Szabo C (2006) Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 58:87–114. doi:10.1124/pr.58.1.6

    Article  PubMed  CAS  Google Scholar 

  48. Grishko V, Pastukh V, Solodushko V, Gillespie M, Azuma J, Schaffer S (2003) Apoptotic cascade initiated by angiotensin II in neonatal cardiomyocytes: role of DNA damage. Am J Physiol Heart Circ Physiol 285:H2364–H2372. doi:10.1152/ajpheart.00408.2003

    PubMed  CAS  Google Scholar 

  49. Ishida H, Ichimori K, Hirota Y, Fukahori M, Nakazawa H (1996) Peroxynitrite-induced cardiac myocyte injury. Free Radic Biol Med 20:343–350. doi:10.1016/0891-5849(96)02060-6

    Article  PubMed  CAS  Google Scholar 

  50. Funakoshi H, Kubota T, Kawamura N, Machida Y, Feldman AM, Tsutsui H, Shimokawa H, Takeshita A (2002) Disruption of inducible nitric oxide synthase improves beta-adrenergic inotropic responsiveness but not the survival of mice with cytokine-induced cardiomyopathy. Circ Res 90:959–965. doi:10.1161/01.RES.0000017632.83720.68

    Article  PubMed  CAS  Google Scholar 

  51. Mihm MJ, Coyle CM, Schanbacher BL, Weinstein DM, Bauer JA (2001) Peroxynitrite induced nitration and inactivation of myofibrillar creatine kinase in experimental heart failure. Cardiovasc Res 49:798–807. doi:10.1016/S0008-6363(00)00307-2

    Article  PubMed  CAS  Google Scholar 

  52. Ziolo MT, Katoh H, Bers DM (2001) Expression of inducible nitric oxide synthase depresses beta adrenergic-stimulated calcium release from the sarcoplasmic reticulum in intact ventricular myocytes. Circulation 104:2961–2966. doi:10.1161/hc4901.100379

    Article  PubMed  CAS  Google Scholar 

  53. Mungrue IN, Gros R, You X, Pirani A, Azad A, Csont T, Schulz R, Butany J, Stewart DJ, Husain M (2002) Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, sudden death. J Clin Invest 109:735–743. doi:10.1172/JCI0213265

    PubMed  CAS  Google Scholar 

  54. Heger J, Godecke A, Flogel U, Kühn-Velten WN, Schrader J (2002) Cardiac specific overexpression of inducible nitric oxide synthase does not result in severe cardiac dysfunction. Circ Res 90:93–99. doi:10.1161/hh0102.102757

    Article  PubMed  CAS  Google Scholar 

  55. Jones SP, Greer JJ, Ware PD, Yang J, Walsh K, Lefer DJ (2005) Deficiency of iNOS does not attenuate severe congestive heart failure in mice. Am J Physiol Heart Circ Physiol 288:365–370. doi:10.1152/ajpheart.00245.2004

    Article  CAS  Google Scholar 

  56. Pacher P, Liaudet L, Bai P, Mabley JG, Kaminski PM, Virág L, Deb A, Szabó E, Ungvári Z, Wolin MS, Groves JT, Szabó C (2003) Potent metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin-induced cardiac dysfunction. Circulation 107:896–904. doi:10.1161/01.CIR.0000048192.52098.DD

    Article  PubMed  CAS  Google Scholar 

  57. Szabo C, Mabley JG, Moeller SM et al (2002) Part I: pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol Med 8:571–580

    PubMed  CAS  Google Scholar 

  58. Jagtap PG, Baloglu E, Southan GJ, Mabley JG, Li H, Zhou J, van Duzer J, Salzman AL, Szabó C (2005) Discovery of potent poly-(ADP-ribose) polymerase-1 inhibitors from the modification of indeno [1, 2-c]isoquinolinone. J Med Chem 48:5100–5103. doi:10.1021/jm0502891

    Article  PubMed  CAS  Google Scholar 

  59. Ferdinandy P, Danial H, Ambrus I, Rothery RA, Schulz R (2000) Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 87:241–247

    PubMed  CAS  Google Scholar 

  60. Gao L, Wang W, Zucker IH (2008) Simvastatin inhibits central sympathetic outflow in heart failure by a nitric-oxide synthase mechanism. J Pharmacol Exp Ther 326:278–285. doi:10.1124/jpet.107.136028

    Article  PubMed  CAS  Google Scholar 

  61. Castro PF, Miranda R, Verdejo HE et al (2008) Pleiotropic effects of atorvastatin in heart failure: role in oxidative stress, inflammation, endothelial function, and exercise capacity. J Heart Lung Transplant 27:435–441. doi:10.1016/j.healun.2008.01.012

    Article  PubMed  Google Scholar 

  62. Erbs S, Beck EB, Linke A, Adams V, Gielen S, Kränkel N, Möbius-Winkler S, Höllriegel R, Thiele H, Hambrecht R, Schuler G (2010) High-dose rosuvastatin in chronic heart failure promotes vasculogenesis, corrects endothelial function, and improves cardiac remodeling—results from a randomized, double-blind, and placebo-controlled study. Int J Cardiol. [Epub ahead of print]. doi:10.1016/j.ijcard.2010.02.019

  63. Andreou I, Tousoulis D, Miliou A, Tentolouris C, Zisimos K, Gounari P, Siasos G, Papageorgiou N, Papadimitriou CA, Dimopoulos MA, Stefanadis C (2010) Effects of rosuvastatin on myeloperoxidase levels in patients with chronic heart failure: a randomized placebo-controlled study. Atherosclerosis 210:194–198. doi:10.1016/j.atherosclerosis.2009.10.046

    Article  PubMed  CAS  Google Scholar 

  64. Tousoulis D, Andreou I, Tentolouris C, Antoniades C, Papageorgiou N, Gounari P, Kotrogiannis I, Miliou A, Charakida M, Trikas A, Stefanadis C (2009) Comparative effects of rosuvastatin and allopurinol on circulating levels of matrix metalloproteinases and tissue inhibitors of metalloproteinases in patients with chronic heart failure. Int J Cardiol. [Epub ahead of print]. doi:10.1016/j.ijcard.2009.05.051

  65. Tousoulis D, Antoniades C, Stefanadis C (2008) Statins ameliorate atherosclerosis induced by inhibition of nitric oxide synthase: another novel vascular protective mechanism? Int J Cardiol 123:91–93. doi:10.1016/j.ijcard.2007.04.054

    Article  PubMed  Google Scholar 

  66. Everson WV, Smart EJ (2001) Influence of caveolin, cholesterol, and lipoproteins on nitric oxide synthase: implications for vascular disease. Trends Cardiovasc Med 11:246–250. doi:10.1016/S1050-1738(01)00119-0

    Article  PubMed  CAS  Google Scholar 

  67. Sessa WC (2001) Can modulation of endothelial nitric oxide synthase explain the vasculoprotective actions of statins? Trends Mol Med 7:189–191. doi:10.1016/S1471-4914(01)01985-2

    Article  PubMed  CAS  Google Scholar 

  68. Laufs U, Liao JK (2000) Direct vascular effects of HMG-CoA reductase inhibitors. Trends Cardiovasc Med 10:143–148. doi:10.1016/S1050-1738(00)00044-X

    Article  PubMed  CAS  Google Scholar 

  69. Takemoto M, Sun J, Hiroki J, Shimokawa H, Liao JK (2002) Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation 106:57–62. doi:10.1161/01.CIR.0000020682.73694.AB

    Article  PubMed  CAS  Google Scholar 

  70. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605. doi:10.1038/21224

    Article  PubMed  CAS  Google Scholar 

  71. García-Cardeña G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC (1998) Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392:821–824. doi:10.1038/33934

    Article  PubMed  Google Scholar 

  72. Hattori Y, Nakanishi N, Akimoto K, Yoshida M, Kasai K (2003) HMG-CoA reductase inhibitor increases GTP cyclohydrolase I mRNA and tetrahydrobiopterin in vascular endothelial cells. Arterioscler Thromb Vasc Biol 23:176–182. doi:10.1161/01.ATV.0000054659.72231.A1

    Article  PubMed  CAS  Google Scholar 

  73. McMurray JJ, Kjekshus J, Gullestad L, Dunselman P, Hjalmarson A, Wedel H, Lindberg M, Waagstein F, Grande P, Hradec J, Kamenský G, Korewicki J, Kuusi T, Mach F, Ranjith N, Wikstrand J, CORONA Study Group (2009) Effects of statin therapy according to plasma high-sensitivity C-reactive protein concentration in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA): a retrospective analysis. Circulation 120:2188–2196. doi:10.1161/CIRCULATIONAHA.109.849117

    Article  PubMed  CAS  Google Scholar 

  74. Varin R, Mulder P, Tamion F, Richard V, Henry JP, Lallemand F, Lerebours G, Thuillez C (2000) Improvement of endothelial function by chronic angiotensin-converting enzyme inhibition in heart failure: role of nitric oxide, prostanoids, oxidant stress. Circulation 102:351–356

    PubMed  CAS  Google Scholar 

  75. Thai H, Wollmuth J, Goldman S, Gaballa M (2003) Angiotensin subtype 1 rReceptor (AT1) blockade improves vasorelaxation in heart failure by up-regulation of endothelial nitric-oxide synthase via activation of the AT2 receptor. J Pharmacol Exp Ther 307:1171–1178. doi:10.1124/jpet.103.054916

    Article  PubMed  CAS  Google Scholar 

  76. Chirkov YY, Holmes AS, Martelli JD, Horowitz JD (2004) Effect of perindopril on platelet nitric oxide resistance in patients with chronic heart failure secondary to ischemic left ventricular dysfunction. Am J Cardiol 93:1438–1440. doi:10.1016/j.amjcard.2004.02.052

    Article  PubMed  CAS  Google Scholar 

  77. Thai HM, Do BQ, Tran TD, Gaballa MA, Goldman S (2006) Aldosterone antagonism improves endothelial-dependent vasorelaxation in heart failure via upregulation of endothelial nitric oxide synthase production. J Card Fail 12:240–245. doi:10.1016/j.cardfail.2006.01.002

    Article  PubMed  CAS  Google Scholar 

  78. Farquharson CA, Struthers AD (2000) Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure. Circulation 101:594–597

    PubMed  CAS  Google Scholar 

  79. Koifman B, Topilski I, Megidish R, Zelmanovich L, Chernihovsky T, Bykhovsy E, Keren G (2006) Effects of losartan +l-arginine on nitric oxide production, endothelial cell function, and hemodynamic variables in patients with heart failure secondary to coronary heart disease. Am J Cardiol 98:172–177. doi:10.1016/j.amjcard.2006.01.085

    Article  PubMed  CAS  Google Scholar 

  80. Iwanaga Y, Gu Y, Dieterle T, Presotto C, Del Soldato P, Peterson KL, Ongini E, Condorelli G, Ross J Jr (2004) A nitric oxide-releasing derivative of enalapril, NCX 899, prevents progressive cardiac dysfunction and remodeling in hamsters with heart failure. FASEB J 18:587–588. doi:10.1096/fj.03-0872fje

    PubMed  CAS  Google Scholar 

  81. Liao Y, Asakura M, Takashima S, Ogai A, Asano Y, Shintani Y, Minamino T, Asanuma H, Sanada S, Kim J, Kitamura S, Tomoike H, Hori M, Kitakaze M (2004) Celiprolol, a vasodilatory beta-blocker, inhibits pressure overload-induced cardiac hypertrophy and prevents the transition to heart failure via nitric oxide-dependent mechanisms in mice. Circulation 110:692–699. doi:10.1161/01.CIR.0000137831.08683.E1

    Article  PubMed  CAS  Google Scholar 

  82. de Groot AA, Mathy MJ, van Zwieten PA, Peters SL (2007) Vasodilator effects of nebivolol in a rat model of hypertension and a rabbit model of congestive heart failure. J Cardiovasc Pharmacol 50:56–60. doi:10.1097/FJC.0b013e3180587e35

    Article  PubMed  Google Scholar 

  83. Lepore JJ, Maroo A, Bigatello LM, Dec GW, Zapol WM, Bloch KD, Semigran MJ (2005) Hemodynamic effects of sildenafil in patients with congestive heart failure and pulmonary hypertension: combined administration with inhaled nitric oxide. Chest 127:1647–1653. doi:10.1378/chest.127.5.1647

    Article  PubMed  CAS  Google Scholar 

  84. Horinaka S, Kobayashi N, Yagi H, Mori Y, Matsuoka H (2006) Nicorandil but not ISDN upregulates endothelial nitric oxide synthase expression, preventing left ventricular remodeling and degradation of cardiac function in Dahl salt-sensitive hypertensive rats with congestive heart failure. J Cardiovasc Pharmacol 47:629–635. doi:10.1097/01.fjc.0000211741.47960.c2

    Article  PubMed  CAS  Google Scholar 

  85. Weiss HR, Rodriguez E, Tse J, Scholz PM (1994) Effect of increased myocardial cyclic GMP induced by cyclic GMP-phosphodiesterase inhibition on oxygen consumption and supply of rabbit hearts. Clin Exp Pharmacol Physiol 21:607–614

    Article  PubMed  CAS  Google Scholar 

  86. Sasaki N, Sato T, Ohler A, O’Rourke B, Marbán E (2000) Activation of mitochondrial ATP-dependent potassium channels by nitric oxide. Circulation 101:439–445

    PubMed  CAS  Google Scholar 

  87. Han J, Kim N, Joo H, Kim E, Earm YE (2002) ATP-sensitive K(+) channel activation by nitric oxide and protein kinase G in rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol 283:H1545–H1554. doi:10.1152/ajpheart.01052.2001

    PubMed  CAS  Google Scholar 

  88. Wohlfart P, Xu H, Endlich A, Habermeier A, Closs EI, Hübschle T, Mang C, Strobel H, Suzuki T, Kleinert H, Förstermann U, Ruetten H, Li H (2008) Antiatherosclerotic effects of small-molecular-weight compounds enhancing endothelial nitric-oxide synthase (eNOS) expression and preventing eNOS uncoupling. J Pharmacol Exp Ther 325:370–379. doi:10.1124/jpet.107.128009

    Article  PubMed  CAS  Google Scholar 

  89. Sasaki K, Heeschen C, Aicher A, Ziebart T, Honold J, Urbich C, Rossig L, Koehl U, Koyanagi M, Mohamed A, Brandes RP, Martin H, Zeiher AM, Dimmeler S (2006) Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy. Proc Natl Acad Sci USA 103:14537–14541. doi:10.1073/pnas.0604144103

    Article  PubMed  CAS  Google Scholar 

  90. Fraccarollo D, Widder JD, Galuppo P, Thum T, Tsikas D, Hoffmann M, Ruetten H, Ertl G, Bauersachs J (2008) Improvement in left ventricular remodeling by the endothelial nitric oxide synthase enhancer AVE9488 after experimental myocardial infarction. Circulation 118:818–827. doi:10.1161/CIRCULATIONAHA.107.717702

    Article  PubMed  CAS  Google Scholar 

  91. Linz W, Wohlfart P, Baader M, Breitschopf K, Falk E, Schäfer HL, Gerl M, Kramer W, Rütten H (2009) The peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonist, AVE8134, attenuates the progression of heart failure and increases survival in rats. Acta Pharmacol Sin 30:935–946. doi:10.1038/aps.2009.58

    Article  PubMed  CAS  Google Scholar 

  92. Setoguchi S, Hirooka Y, Eshima K, Shimokawa H, Takeshita A (2002) Tetrahydrobiopterin improves impaired endothelium-dependent forearm vasodilation in patients with heart failure. J Cardiovasc Pharmacol 39:363–368

    Article  PubMed  CAS  Google Scholar 

  93. Gao L, Yin H, Smith S, Jr R, Chao L, Chao J (2008) Role of kallistatin in prevention of cardiac remodeling after chronic myocardial infarction. Lab Invest 88:1157–1166. doi:10.1038/labinvest.2008.85

    Article  PubMed  CAS  Google Scholar 

  94. Sasaki H, Asanuma H, Fujita M, Takahama H, Wakeno M, Ito S, Ogai A, Asakura M, Kim J, Minamino T, Takashima S, Sanada S, Sugimachi M, Komamura K, Mochizuki N, Kitakaze M (2009) Metformin prevents progression of heart failure in dogs: role of AMP-activated protein kinase. Circulation 119:2568–2577. doi:10.1161/CIRCULATIONAHA.108.798561

    Article  PubMed  CAS  Google Scholar 

  95. Chin BS, Langford NJ, Nuttall SL, Gibbs CR, Blann AD, Lip GY (2003) Anti-oxidative properties of beta-blockers and angiotensin-converting enzyme inhibitors in congestive heart failure. Eur J Heart Fail 5:171–174. doi:10.1016/S1388-9842(02)00251-9

    Article  PubMed  CAS  Google Scholar 

  96. Nagatomo Y, Yoshikawa T, Kohno T, Yoshizawa A, Anzai T, Meguro T, Satoh T, Ogawa S (2007) Effects of beta-blocker therapy on high sensitivity C-reactive protein, oxidative stress, and cardiac function in patients with congestive heart failure. J Card Fail 13:365–371. doi:10.1016/j.cardfail.2007.02.004

    Article  PubMed  CAS  Google Scholar 

  97. Bajcetic M, Kokic Nikolic A, Djukic M, Kosutic J, Mitrovic J, Mijalkovic D, Jovanovic I, Simeunovic S, Spasic MB, Samardzic R (2008) Effects of carvedilol on left ventricular function and oxidative stress in infants and children with idiopathic dilated cardiomyopathy: a 12-month, two-center, open-label study. Clin Ther 30:702–714. doi:10.1016/j.clinthera.2008.04.007

    Article  PubMed  CAS  Google Scholar 

  98. White M, Lepage S, Lavoie J, De Denus S, Leblanc MH, Gossard D, Whittom L, Racine N, Ducharme A, Dabouz F, Rouleau JL, Touyz R (2007) Effects of combined candesartan and ACE inhibitors on BNP, markers of inflammation and oxidative stress, and glucose regulation in patients with symptomatic heart failure. J Card Fail 13:86–94. doi:10.1016/j.cardfail.2006.10.013

    Article  PubMed  CAS  Google Scholar 

  99. Ellis GR, Nightingale AK, Blackman DJ, Anderson RA, Mumford C, Timmins G, Lang D, Jackson SK, Penney MD, Lewis MJ, Frenneaux MP, Morris-Thurgood J (2002) Addition of candesartan to angiotensin converting enzyme inhibitor therapy in patients with chronic heart failure does not reduce levels of oxidative stress. Eur J Heart Fail 4:193–199. doi:10.1016/S1388-9842(02)00002-8

    Article  PubMed  CAS  Google Scholar 

  100. Heeba G, Moselhy ME, Hassan M, Khalifa M, Gryglewski R, Malinski T (2009) Anti-atherogenic effect of statins: role of nitric oxide, peroxynitrite and haem oxygenase-1. Br J Pharmacol 156:1256–1266. doi:10.1111/j.1476-5381.2009.00125.x

    Article  PubMed  CAS  Google Scholar 

  101. Heeba G, Hassan MK, Khalifa M, Malinski T (2007) Adverse balance of nitric oxide/peroxynitrite in the dysfunctional endothelium can be reversed by statins. J Cardiovasc Pharmacol 50:391–398. doi:10.1097/FJC.0b013e31811f3fd0

    Article  PubMed  CAS  Google Scholar 

  102. Daiber A, Oelze M, Coldewey M, Huth C, Schildknecht S, Bachschmid M, Nazirisadeh Y, Ullrich V, Mülsch A, Münzel T, Tsilimingas N (2005) Hydralazine is a powerful inhibitor of peroxynitrite formation as a possible explanation for its beneficial effects on prognosis in patients with congestive heart failure. Biochem Biophys Res Commun 338:1865–1874. doi:10.1016/j.bbrc.2005.10.106

    Article  PubMed  CAS  Google Scholar 

  103. Pacher P, Liaudet L, Bai P, Virag L, Mabley JG, Haskó G, Szabó C (2002) Activation of poly(ADP-ribose) polymerase contributes to development of doxorubicin-induced heart failure. J Pharmacol Exp Ther 300:862–867. doi:10.1124/jpet.300.3.862

    Article  PubMed  CAS  Google Scholar 

  104. Baljinnyam E, Hasebe N, Morihira M, Sumitomo K, Matsusaka T, Fujino T, Fukuzawa J, Ushikubi F, Kikuchi K (2006) Oral pretreatment with ebselen enhances heat shock protein 72 expression and reduces myocardial infarct size. Hypertens Res 29:905–913. doi:10.1291/hypres.29.905

    Article  PubMed  CAS  Google Scholar 

  105. Yano M, Okuda S, Oda T, Tokuhisa T, Tateishi H, Mochizuki M, Noma T, Doi M, Kobayashi S, Yamamoto T, Ikeda Y, Ohkusa T, Ikemoto N, Matsuzaki M (2005) Correction of defective interdomain interaction within ryanodine receptor by antioxidant is a new therapeutic strategy against heart failure. Circulation 112:3633–3643. doi:10.1161/CIRCULATIONAHA.105.555623

    Article  PubMed  CAS  Google Scholar 

  106. Yamada T, Nagata K, Cheng XW, Obata K, Saka M, Miyachi M, Naruse K, Nishizawa T, Noda A, Izawa H, Kuzuya M, Okumura K, Murohara T, Yokota M (2009) Long-term administration of nifedipine attenuates cardiac remodeling and diastolic heart failure in hypertensive rats. Eur J Pharmacol 615:163–170. doi:10.1016/j.ejphar.2009.05.028

    Article  PubMed  CAS  Google Scholar 

  107. Dover AR, Chia S, Ferguson JW, Cruden NL, Megson IL, Fox KA, Newby DE (2006) Inducible nitric oxide synthase activity does not contribute to the maintenance of peripheral vascular tone in patients with heart failure. Clin Sci (Lond) 111:275–280. doi:10.1042/CS20060104

    Article  CAS  Google Scholar 

  108. Schäfer A, Fraccarollo D, Widder J, Eigenthaler M, Ertl G, Bauersachs J (2009) Inhibition of platelet activation in rats with severe congestive heart failure by a novel endothelial nitric oxide synthase transcription enhancer. Eur J Heart Fail 11:336–341. doi:10.1093/eurjhf/hfp005

    Article  PubMed  CAS  Google Scholar 

  109. Castro P, Vukasovic JL, Chiong M, Díaz-Araya G, Alcaino H, Copaja M, Valenzuela R, Greig D, Pérez O, Corbalan R, Lavandero S (2005) Effects of carvedilol on oxidative stress and chronotropic response to exercise in patients with chronic heart failure. Eur J Heart Fail 7:1033–1039. doi:10.1016/j.ejheart.2004.11.009

    Article  PubMed  CAS  Google Scholar 

  110. Nishikimi T, Karasawa T, Inaba C, Ishimura K, Tadokoro K, Koshikawa S, Yoshihara F, Nagaya N, Sakio H, Kangawa K, Matsuoka H (2009) Effects of long-term intravenous administration of adrenomedullin (AM) plus hANP therapy in acute decompensated heart failure: a pilot study. Circ J 73:892–898. doi:10.1253/circj.CJ-08-0487

    Article  PubMed  CAS  Google Scholar 

  111. Kishimoto C, Shioji K, Kinoshita M, Iwase T, Tamaki S, Fujii M, Murashige A, Maruhashi H, Takeda S, Nonogi H, Hashimoto T (2003) Treatment of acute inflammatory cardiomyopathy with intravenous immunoglobulin ameliorates left ventricular function associated with suppression of inflammatory cytokines and decreased oxidative stress. Int J Cardiol 91:173–178. doi:10.1016/S0167-5273(03)00002-0

    Article  PubMed  Google Scholar 

  112. Nakamura R, Egashira K, Machida Y, Hayashidani S, Takeya M, Utsumi H, Tsutsui H, Takeshita A (2002) Probucol attenuates left ventricular dysfunction and remodeling in tachycardia-induced heart failure: roles of oxidative stress and inflammation. Circulation 106:362–367. doi:10.1161/01.CIR.0000021430.04195.51

    Article  PubMed  CAS  Google Scholar 

  113. Nishikimi T, Mori Y, Ishimura K, Ishikawa Y, Koshikawa S, Akimoto K, Minamino N, Kangawa K, Matsuoka H (2006) Chronic effect of combined treatment with omapatrilat and adrenomedullin on the progression of heart failure in rats. Am J Hypertens 19:1039–1048. doi:j.amjhyper.2006.02.013

    Article  PubMed  CAS  Google Scholar 

  114. Cox MJ, Hawkins UA, Hoit BD, Tyagi SC (2004) Attenuation of oxidative stress and remodeling by cardiac inhibitor of metalloproteinase protein transfer. Circulation 109:2123–2128. doi:10.1161/01.CIR.0000127429.53391.78

    Article  PubMed  CAS  Google Scholar 

  115. Gounari P, Tousoulis D, Antoniades C, Kampoli AM, Stougiannos P, Papageorgiou N, Roulia G, Stefanadi E, Siasos G, Tsioufis C, Stefanadis C (2010) Rosuvastatin but not ezetimibe improves endothelial function in patients with heart failure, by mechanisms independent of lipid lowering. Int J Cardiol 142:87–91. doi:10.1016/j.ijcard.2008.12.067

    Article  PubMed  Google Scholar 

  116. Tousoulis D, Antoniades C, Vassiliadou C, Toutouza M, Pitsavos C, Tentolouris C, Trikas A, Stefanadis C (2005) Effects of combined administration of low dose atorvastatin and vitamin E on inflammatory markers and endothelial function in patients with heart failure. Eur J Heart Fail 7:1126–1132. doi:10.1016/j.ejheart.2005.03.007

    Article  PubMed  CAS  Google Scholar 

  117. Tousoulis D, Antoniades C, Vassiliadou C, Toutouza M, Pitsavos C, Tentolouris C, Trikas A, Stefanadis C (2005) Effects of atorvastatin on reactive hyperaemia and the thrombosis-fibrinolysis system in patients with heart failure. Heart 91:27–31. doi:10.1136/hrt.2003.027110

    Article  PubMed  CAS  Google Scholar 

  118. Tousoulis D, Antoniades C, Bosinakou E, Kotsopoulou M, Pitsavos C, Vlachopoulos C, Panagiotakos D, Stefanadis C (2005) Effects of atorvastatin on reactive hyperemia and inflammatory process in patients with congestive heart failure. Atherosclerosis 178:359–363. doi:10.1136/hrt.2003.027110

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Tousoulis.

Additional information

Dimitris Tousoulis and Nikolaos Papageorgiou have equally contributed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tousoulis, D., Papageorgiou, N., Briasoulis, A. et al. Conflicting effects of nitric oxide and oxidative stress in chronic heart failure: potential therapeutic strategies. Heart Fail Rev 17, 65–79 (2012). https://doi.org/10.1007/s10741-011-9228-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-011-9228-4

Keywords

Navigation