Skip to main content
Log in

Current and future role of cardiovascular magnetic resonance in cardiac resynchronization therapy

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Cardiac resynchronization therapy (CRT) has revolutionized the treatment of selected patients with systolic heart failure. It is well recognized, however, that the symptomatic response to and the outcome of CRT is highly variable. The degree of pre-implant mechanical dyssynchrony and the extent as well as the localization of myocardial scarring are known to contribute to this variability. Cardiovascular magnetic resonance (CMR) is the gold-standard imaging modality for the assessment of myocardial structure and function. Recently, CMR has also been shown to be useful in assessing cardiac dyssynchrony and in guiding left ventricular lead deployment away from scarred myocardium. This review explores the current role of CMR in risk stratification and in guiding LV lead deployment. The potential of CMR in identifying the arrhythmogenic substrate is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Prinzen FW, Augustijn CH, Arts T, Allessie MA, Reneman RS (1990) Redistribution of myocardial fiber strain and blood flow by asynchronous activation. Am J Physiol 259:H300–H308

    PubMed  CAS  Google Scholar 

  2. Park RC, Little WC, O’Rourke RA (1985) Effect of alteration of left ventricular activation sequence on the left ventricular end-systolic pressure-volume relation in closed-chest dogs. Circ Res 57(5):706–717

    PubMed  CAS  Google Scholar 

  3. Burkhoff D, Oikawa RY, Sagawa K (1986) Influence of pacing site on canine left ventricular contraction. Am J Physiol 251:H428–H435

    PubMed  CAS  Google Scholar 

  4. Pitzalis MV, Iacoviello M, Romito R, Guida P, De Tomasi E, Luzzi G, Anaclerio M, Forleo C, Rizzon P (2002) Cardiac resynchronization therapy tailored by echocardiographic evaluation of ventricular asynchrony. J Am Coll Cardiol 40:1615–1622

    Article  PubMed  Google Scholar 

  5. Yu CM, Zhang Q, Chan YS, Chan CK, Yip GW, Kum LC, Wu EB, Lee PW, Lam YY, Chan S, Fung JW (2006) Tissue doppler velocity is superior to displacement and strain mapping in predicting left ventricular reverse remodelling response after cardiac resynchronisation therapy. Heart 92(10):1452–1456

    Article  PubMed  Google Scholar 

  6. Yu CM, Fung WH, Lin H, Zhang Q, Sanderson JE, Lau CP (2003) Predictors of left ventricular reverse remodeling after cardiac resynchronization therapy for heart failure secondary to idiopathic dilated or ischemic cardiomyopathy. Am J Cardiol 91(6):684–688

    Article  PubMed  Google Scholar 

  7. Bax JJ, Bleeker GB, Marwick TH, Molhoek SG, Boersma E, Steendijk P, Van der Wall EE, Schalij MJ (2004) Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol 44:1834–1840

    Article  PubMed  Google Scholar 

  8. Chung E, Leon A, Tavazzi L, Sun J, Nihoyannopoulos P, Merlino J, Abraham W, Guio S, Leclerq C, Bax J, Yu C-M, Gorcsan J III, Sutton M, De Sutter J, Murillo J (2008) Results of the predictors of response to CRT (prospect) trial. Circulation 117(20):2608–2616

    Article  PubMed  Google Scholar 

  9. Hawkins NM, Petrie MC, Burgess MI, McMurray JJ (2009) Selecting patients for cardiac resynchronization therapy: the fallacy of echocardiographic dyssynchrony. J Am Coll Cardiol 53(21):1944–1959

    Article  PubMed  Google Scholar 

  10. Marwick T (2008) Hype and hope in the use of echocardiography for selection for cardiac resynchronization therapy: the tower of Babel revisited. Circulation 117:2573–2576

    Article  PubMed  Google Scholar 

  11. Conca C, Faletra FF, Miyazaki C, Oh J, Mantovani A, Klersy C, Sorgente A, Pedrazzini GB, Pasotti E, Moccetti T, Auricchio A (2009) Echocardiographic parameters of mechanical synchrony in healthy individuals. Am J Cardiol 103(1):136–142

    Article  PubMed  Google Scholar 

  12. Fornwalt BK, Sprague WW, BeDell P, Suever JD, Gerritse B, Merlino JD, Fyfe DA, Leon AR, Oshinski JN (2010) Agreement is poor among current criteria used to define response to cardiac resynchronization therapy. Circulation 121(18):1985–1991

    Article  PubMed  Google Scholar 

  13. Barnett D, Phillips S, Longson C (2007) Cardiac resynchronisation therapy for the treatment of heart failure: NICE technology appraisal guidance. Heart 93:1134–1135

    Article  PubMed  Google Scholar 

  14. Foley PW, Chalil S, Khadjooi K, Jordan P, Smith RE, Frenneaux MP, Leyva F (2009) Effects of cardiac resynchronization therapy in patients unselected for mechanical dyssynchrony. Int J Cardiol 143:51–56

    Article  PubMed  Google Scholar 

  15. Chalil S, Stegemann B, Muhyaldeen S, Khadjooi K, Smith R, Jordan P, Leyva F (2007) Intraventricular dyssynchrony predicts mortality and morbidity following cardiac resynchronization therapy: a study using cardiovascular magnetic resonance tissue synchronization imaging. J Am Coll Cardiol 50:243–252

    Article  PubMed  Google Scholar 

  16. Foley PW, Khadjooi K, Ward JA, Smith RE, Stegemann B, Frenneaux MP, Leyva F (2009) Radial dyssynchrony assessed by cardiovascular magnetic resonance in relation to left ventricular function, myocardial scarring and QRS duration in patients with heart failure. J Cardiovasc Magn Reson 11(1):50–56

    Article  PubMed  Google Scholar 

  17. Fornwalt BK, Gonzales PC, Delfino JG, Eisner R, Leon AR, Oshinski JN (2008) Quantification of left ventricular internal flow from cardiac magnetic resonance images in patients with dyssynchronous heart failure. J Magn Reson Imaging 28(2):375–381

    Article  PubMed  Google Scholar 

  18. Axel L, Dougherty L (1989) MR imaging of motion with spatial modulation of magnetization. Radiology 171(3):841–845

    PubMed  CAS  Google Scholar 

  19. Shehata ML, Cheng S, Osman NF, Bluemke DA, Lima JA (2009) Myocardial tissue tagging with cardiovascular magnetic resonance. J Cardiovasc Magn Reson 11(1):55

    Article  PubMed  Google Scholar 

  20. Kraitchman DL, Sampath S, Castillo E, Derbyshire JA, Boston RC, Bluemke DA, Gerber BL, Prince JL, Osman NF (2003) Quantitative ischemia detection during cardiac magnetic resonance stress testing by use of FastHARP. Circulation 107(15):2025–2030

    Article  PubMed  Google Scholar 

  21. Sengupta PP, Khandheria BK, Narula J (2008) Twist and untwist mechanics of the left ventricle. Heart Fail Clin 4(3):315–324

    Article  PubMed  Google Scholar 

  22. Torrent-Guasp F, Kocica MJ, Corno AF, Komeda M, Carreras-Costa F, Flotats A, Cosin-Aguillar J, Wen H (2005) Towards new understanding of the heart structure and function. Eur J Cardiothorac Surg 27:191–201

    Article  PubMed  Google Scholar 

  23. Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH (1981) Left ventricular fibre architecture in man. Br Heart J 45(3):248–263

    Article  PubMed  CAS  Google Scholar 

  24. Yettram A, Vinson CA, Gibson DG (1983) Effect of myocardial fibre architecture on the behaviour of the human left ventricle in diastole. J Biomed Eng 5:321–328

    Article  PubMed  CAS  Google Scholar 

  25. Xu C, Pilla J, Isaac G, Gorman J, Blom A, Gorman R, Ling Z, Dougherty L (2010) Deformation analysis of 3D tagged cardiac images using an optical flow method. J Cardiovasc Magn Reson 12(1):19–25

    Article  PubMed  Google Scholar 

  26. Nelson GS, Curry CW, Wyman BT, Kramer A, Declerck J, Talbot M, Douglas MR, Berger RD, McVeigh ER, Kass DA (2000) Predictors of systolic augmentation from left ventricular pre excitation in patients with dilated cardiomyopathy and intraventricular conduction delay. Circulation 101(23):2703–2709

    PubMed  CAS  Google Scholar 

  27. Wyman BT, Hunter WC, Prinzen FW, Faris OP, McVeigh ER (2002) Effects of single-and biventricular pacing on temporal and spatial dynamics of ventricular contraction. Am J Physiol Heart Circ Physiol 282:H372–H379

    PubMed  CAS  Google Scholar 

  28. Helm RH, Lecquercq C, Faris Q, Ozturk C, McVeigh E, Lardo AC, Kass D (2005) Cardiac dyssynchrony analysis using circumferential versus longitudinal strain: implications for assessing cardiac resynchronization. Circulation 111:2760–2767

    Article  PubMed  Google Scholar 

  29. Leclercq C, Fairs O, Tunin R, Johnson J, Kato R, Evans F, Spinelli J, Halperin H, McVeigh E, Kass DA (2002) Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle branch block. Circulation 106:1760–1763

    Article  PubMed  Google Scholar 

  30. Helm RH, Byrne M, Helm PA, Daya SK, Osman NF, Tunin R, Halperin HR, Berger RD, Kass DA, Lardo AC (2007) Three-dimensional mapping of optimal left ventricular pacing site for cardiac resynchronization. Circulation 115(8):953–961

    Article  PubMed  Google Scholar 

  31. Bilchick KC, Dimaano V, Wu KC, Helm RH, Weiss RG, Lima JA, Berger RD, Tomaselli GF, Bluemke DA, Halperin HR, Abraham T, Kass DA, Lardo AC (2008) Cardiac magnetic resonance assessment of dyssynchrony and myocardial scar predicts function class improvement following cardiac resynchronization therapy. JACC 1(5):561–568

    PubMed  Google Scholar 

  32. Constable RT, Rath KM, Sinusas AJ, Gore JC (1994) Development and evaluation of tracking algorithms for cardiac wall motion analysis using phase velocity MR imaging. Magn Reson Med 32(1):33–42

    Article  PubMed  CAS  Google Scholar 

  33. Marsan NA, Bleeker GB, van Bommel RJ, Ypenburg C, Delgado V, Borleffs CJ, Holman ER, van der Wall EE, Schalij MJ, Bax JJ (2009) Comparison of time course of response to cardiac resynchronization therapy in patients with ischemic versus nonischemic cardiomyopathy. Am J Cardiol 103(5):690–694

    Article  PubMed  Google Scholar 

  34. Westenberg JJM, Lamb H, van der Geest RJ, Bleeker GA, Holman ER, Schalij MJ, de Roos A, Van der Wall EE, Reiber JHC, Bax JJ (2006) Assessment of left ventricular dyssynchrony in patients with conduction delay and idiopathic dilated cardiomyopathy:head-to-head comparison between tissue Doppler imaging and velocity-encoded magnetic resonance imaging. J Am Coll Cardiol 47:2042–2048

    Article  PubMed  Google Scholar 

  35. Osman NF, Sampath S, Atalar E, Prince JL (2001) Imaging longitudinal cardiac strain on short-axis images using strain-encoded MRI. Magn Reson Med 46(2):324–334

    Article  PubMed  CAS  Google Scholar 

  36. Gasparini M, Mantica M, Galimberti P, Bocciolone M, Genovese L, Mangiavacchi M, Marchesina UL, Faletra F, Klersy C, Coates R, Gronda E (2003) Is the left ventricular lateral wall the best lead implantation site for cardiac resynchronization therapy? Pacing Clin Electrophysiol 26(1 Pt 2):162–168

    Article  PubMed  Google Scholar 

  37. Rossillo A, Verma A, Saad EB, Corrado A, Gasparini G, Marrouche NF, Golshayan AR, McCurdy R, Bhargava M, Khaykin Y, Burkhardt JD, Martin DO, Wilkoff BL, Saliba WI, Schweikert RA, Raviele A, Natale A (2004) Impact of coronary sinus lead position on biventricular pacing: mortality and echocardiographic evaluation during long-term follow-up. J Cardiovasc Electrophysiol 15(10):1120–1125

    Article  PubMed  Google Scholar 

  38. Kronborg MB, Albertsen AE, Nielsen JC, Mortensen PT (2009) Long-term clinical outcome and left ventricular lead position in cardiac resynchronization therapy. Europace 11(9):1177–1182

    Article  PubMed  Google Scholar 

  39. Ansalone G, Giannantoni P, Ricci R et al (2001) Doppler myocardial imaging in patients with heart failure receiving biventricular pacing treatment. Am Heart J 142:881–896

    Article  PubMed  CAS  Google Scholar 

  40. Murphy RT, Sigurdsson G, Mulamalla S, Agler D, Popovic ZB, Starling RC, Wilkoff BL, Thomas JD, Grimm RA (2006) Tissue synchronization imaging and optimal left ventricular pacing site in cardiac resynchronization therapy. Am J Cardiol 97(11):1615–1621

    Article  PubMed  Google Scholar 

  41. Becker M, Hoffmann R, Schmitz F, Hundemer A, Kuhl H, Schauerte P, Kelm M, Franke A (2007) Relation of optimal lead positioning as defined by three-dimensional echocardiography to long-term benefit of cardiac resynchronization. Am J Cardiol 100(11):1671–1676

    Article  PubMed  Google Scholar 

  42. Becker M, Franke A, Breithardt OA, Ocklenburg C, Kaminski T, Kramann R, Knackstedt C, Stellbrink C, Hanrath P, Schauerte P, Hoffmann R (2007) Impact of left ventricular lead position on the efficacy of cardiac resynchronisation therapy: a two-dimensional strain echocardiography study. Heart 93(10):1197–1203

    Article  PubMed  Google Scholar 

  43. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE (2002) Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol 39:1151–1158

    Article  PubMed  Google Scholar 

  44. Wu E, Judd RM, Vargas JD, Klocke FJ, Bonow RO, Kin RJ (2001) Visualisation of presence, location and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 357:21–28

    Article  PubMed  CAS  Google Scholar 

  45. Kim RJ, Wu E, Rafael A, Chen E-L, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  PubMed  CAS  Google Scholar 

  46. Bellenger NG, Yousef Z, Kajappan K, Marber MS, Pennell DJ (2005) Infarct viability influences ventricular remodelling after late recanalisation of an occluded infarct related artery. Heart 91:478–483

    Article  PubMed  CAS  Google Scholar 

  47. Meluzin J, Cerny J, Frelich M, Stetka F, Spiranova F, Popelova J, Stipal R (1998) Prognostic value of the amount of dysfunctional but viable myocardium in revascularized patients with coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol 32:912–920

    Article  PubMed  CAS  Google Scholar 

  48. Lee KS, Marwick TH, Cook SA, Go RT, Fix JS, James KB, Sapp SK, McIntyre WJ, Thomas JD (1994) Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation 90:2687–2694

    PubMed  CAS  Google Scholar 

  49. Bello D, Shah DJ, Farah GM, Di Luzio S, Parker MA, Johnson M, Cotts WG, Klocke FJ, Bonow RO, Judd RM, Gheorghiade M, Kim RJ (2003) Gadolinium cardiovascular magnetic resonance predicts myocardial dysfunction and remodelling in patients with heart failure undergoing beta-blocker therapy. Circulation 108:1945–1953

    Article  PubMed  CAS  Google Scholar 

  50. McCrohon JA, Moon JJC, Prasad SK, McKenna WJ, Lorenz CH, Coats AJS, Pennell DJ (2003) Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 108:54–59

    Article  PubMed  CAS  Google Scholar 

  51. Assomull RG, Prasad SK, Lyne J, Smith G, Burman ED, Khan M, Sheppard MN, Poole-Wilson PA, Pennell DJ (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48(10):1977–1985

    Article  PubMed  Google Scholar 

  52. White JA, Yee R, Yuan X, Krahn A, Skanes A, Parker M, Klein G, Drangova M (2006) Delayed enhancement magnetic resonance imaging predicts response to cardiac resynchronization therapy in patients with intraventricular dyssynchrony. J Am Coll Cardiol 48(10):1953–1960

    Article  PubMed  Google Scholar 

  53. Chalil S, Foley P, Muyhaldeen S, Patel K, Yousef Z, Smith R, Frenneaux M, Leyva F (2007) Late gadolinium enhancement-cardiovascular magnetic resonance as a predictor of response to cardiac resynchronization therapy in patients with ischaemic cardiomyopathy. Europace 9:1031–1037

    Article  PubMed  Google Scholar 

  54. Pegg TJ, Selvanayagam JB, Jennifer J, Francis JM, Karamitsos TD, Dall’Armellina E, Smith KL, Taggart DP, Neubauer S (2010) Prediction of global left ventricular functional recovery in patients with heart failure undergoing surgical revascularisation, based on late gadolinium enhancement cardiovascular magnetic resonance. J Cardiovasc Magn Reson 12:56

    Article  PubMed  Google Scholar 

  55. Schwartzman D, Chang I, Michele JJ, Moritznik MS, Foster KR (1999) Electrical impedance properties of normal and chronically infarcted ventricular myocardium. J Interv Card Electrophysiol 3:213–224

    Article  PubMed  CAS  Google Scholar 

  56. Reddy VY, Wrobleski D, Houghtaling C, Josephson ME, Ruskin JN (2003) Combined epicardial and endocardial electroanatomic mapping in a porcine model of healed myocardial infarction. Circulation 107(25):3236–3242

    Article  PubMed  Google Scholar 

  57. Tedrow U, Maisel W, Epstein L, Soejima K, Stevenson W (2004) Feasibility of adjusting paced left ventricular activation by manipulating stimulus strength. J Am Coll Cardiol 44:2249–2251

    Article  PubMed  Google Scholar 

  58. Breithardt OA, Stellbrink C, Kramer AP, Sinha AM, Franke A, Salo R, Schiffgens B, Huvelle E, Auricchio A (2002) PATH-CHF study group. Echocardiographic quantification of left ventricular asynchrony predicts an acute hemodynamic benefit of cardiac resynchronization therapy. J Am Coll Cardiol 40(3):536–545

    Article  PubMed  Google Scholar 

  59. Chalil S, Stegemann B, Muhyaldeen S, Khadjooi S, Foley P, Smith R, Leyva F (2007) Effect of posterolateral left ventricular scar on mortality and morbidity following cardiac resynchronization therapy. Pacing Clin Electrophysiol 10:1201–1207

    Article  Google Scholar 

  60. Rademakers L, VanKerckhoven R, vanDeursen C, Strik M, vanHunnik A, Kuiper M, Lampert A, Klersy C, Leyva F, Auricchio A, Maessen J, Prinzen F (2010) Myocardial infarction does not preclude electrical and hemodynamic benefits of CRT in dyssynchronous canine hearts. Circ Arrhythm Electrophysiol 3:361–368

    Article  PubMed  Google Scholar 

  61. Leyva F, Foley PWX, Stegemann B, Ward JA, Ng LL, Frenneaux MP, Regoli F, Smith REA, Auricchio A (2009) Development and validation of a clinical index to predict survival after cardiac resynchronisation therapy. Heart 95(19):1619–1625

    Article  PubMed  CAS  Google Scholar 

  62. Moss AJ, Greenberg H, Case RB, Zareba W, Hall WJ, Brown MW, Daubert JP, McNitt S, Andrews ML, Elkin AD (2004) Long-term clinical course of patients after termination of ventricular tachyarrhythmia by an implanted defibrillator. Circulation 110(25):3760–3765

    Article  PubMed  Google Scholar 

  63. Elhendy A, van Domburg RT, Bax JJ, Roelandt JR (1999) Relation between the extent of coronary artery disease and tachyarrhythmias during dobutamine stress echocardiography. Am J Cardiol 83(6):832–835

    Article  PubMed  CAS  Google Scholar 

  64. Iskander S, Iskandrian AE (1998) Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging. J Am Coll Cardiol 32(1):57–62

    Article  PubMed  CAS  Google Scholar 

  65. Morishima I, Sone T, Tsuboi H, Mukawa H, Uesugi M, Morikawa S, Takagi K, Niwa T, Morita Y, Murakami R, Numaguchi Y, Murohara T, Okumura K (2008) Risk stratification of patients with prior myocardial infarction and advanced left ventricular dysfunction by gated myocardial perfusion SPECT imaging. J Nucl Cardiol 15(5):631–637

    Article  PubMed  Google Scholar 

  66. Wu KC, Weiss RG, Thiemann DR, Kitagawa K, Schmidt A, Dalal D, Lai S, Bluemke DA, Gerstenblith G, Marban E, Tomaselli GF, Lima JA (2008) Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J Am Coll Cardiol 51(25):2414–2421

    Article  PubMed  Google Scholar 

  67. Bello D, Fieno DS, Kim RJ, Pereles FS, Passman R, Song G, Kadish AH, Goldberger JJ (2005) Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J Am Coll Cardiol 45(7):1104–1108

    Article  PubMed  Google Scholar 

  68. Fernandes VR, Wu KC, Rosen BD, Schmidt A, Lardo AC, Osman N, Halperin HR, Tomaselli G, Berger R, Bluemke DA, Marban E, Lima JA (2007) Enhanced infarct border zone function and altered mechanical activation predict inducibility of monomorphic ventricular tachycardia in patients with ischemic cardiomyopathy. Radiology 245(3):712–719

    Article  PubMed  Google Scholar 

  69. Roes SD, Borleffs CJ, van der Geest RJ, Westenberg JJ, Marsan NA, Kaandorp TA, Reiber JH, Zeppenfeld K, Lamb HJ, de Roos A, Schalij MJ, Bax JJ (2009) Infarct tissue heterogeneity assessed with contrast-enhanced MRI predicts spontaneous ventricular arrhythmia in patients with ischemic cardiomyopathy and implantable cardioverter-defibrillator. Circ Cardiovasc Imaging 2(3):183–190

    Article  PubMed  Google Scholar 

  70. Hombach V, Merkle N, Torzewski J, Kraus JM, Kunze M, Zimmermann O, Kestler HA, Wohrle J (2009) Electrocardiographic and cardiac magnetic resonance imaging parameters as predictors of a worse outcome in patients with idiopathic dilated cardiomyopathy. Eur Heart J 30(16):2011–2018

    Article  PubMed  Google Scholar 

  71. Schmidt A, Azevedo CF, Cheng A, Gupta SN, Bluemke DA, Foo TK, Gerstenblith G, Weiss RG, Marban E, Tomaselli GF, Lima JA, Wu KC (2007) Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation 115(15):2006–2014

    Article  PubMed  Google Scholar 

  72. Nazarian S, Bluemke DA, Lardo AC, Zviman MM, Watkins SP, Dickfeld TL, Meininger GR, Roguin A, Calkins H, Tomaselli GF, Weiss RG, Berger RD, Lima JA, Halperin HR (2005) Magnetic resonance assessment of the substrate for inducible ventricular tachycardia in nonischemic cardiomyopathy. Circulation 112(18):2821–2825

    Article  PubMed  Google Scholar 

  73. Leonardi S, Raineri C, De Ferrari GM, Ghio S, Scelsi L, Pasotti M, Tagliani M, Valentini A, Dore R, Raisaro A, Arbustini E (2009) Usefulness of cardiac magnetic resonance in assessing the risk of ventricular arrhythmias and sudden death in patients with hypertrophic cardiomyopathy. Eur Heart J 30(16):2003–2010

    Article  PubMed  Google Scholar 

  74. Adabag AS, Maron BJ, Appelbaum E, Harrigan CJ, Buros JL, Gibson CM, Lesser JR, Hanna CA, Udelson JE, Manning WJ, Maron MS (2008) Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol 51(14):1369–1374

    Article  PubMed  Google Scholar 

  75. Margonato A, Mailhac A, Bonetti F, Vicedomini G, Fragasso G, Landoni C, Lucignani G, Rossetti C, Fazio F, Chierchia SL (1996) Exercise-induced ischemic arrhythmias in patients with previous myocardial infarction: role of perfusion and tissue viability. J Am Coll Cardiol 27(3):593–598

    Article  PubMed  CAS  Google Scholar 

  76. El-Sherif N, Hope RR, Scherlag BJ, Lazzara R (1977) Re-entrant ventricular arrhythmias in the late myocardial infarction period. 2. Patterns of initiation and termination of re-entry. Circulation 55(5):702–719

    PubMed  CAS  Google Scholar 

  77. El-Sherif N, Scherlag BJ, Lazzara R, Hope RR (1977) Re-entrant ventricular arrhythmias in the late myocardial infarction period. 1. Conduction characteristics in the infarction zone. Circulation 55(5):686–702

    PubMed  CAS  Google Scholar 

  78. Mehra R, Zeiler RH, Gough WB, El-Sherif N (1983) Reentrant ventricular arrhythmias in the late myocardial infarction period. 9. Electrophysiologic-anatomic correlation of reentrant circuits. Circulation 67(1):11–24

    PubMed  CAS  Google Scholar 

  79. Marchlinski FE, Buxton AE, Waxman HL, Josephson ME (1983) Identifying patients at risk of sudden death after myocardial infarction: value of the response to programmed stimulation, degree of ventricular ectopic activity and severity of left ventricular dysfunction. Am J Cardiol 52(10):1190–1196

    Article  PubMed  CAS  Google Scholar 

  80. de Haan S, Knaapen P, Beek AM, de Cock CC, Lammertsma AA, van Rossum AC, Allaart CP (2010) Risk stratification for ventricular arrhythmias in ischaemic cardiomyopathy: the value of non-invasive imaging. Europace 12(4):468–474

    Article  PubMed  Google Scholar 

  81. Levine GN, Gomes AS, Arai AE, Bluemke DA, Flamm SD, Kanal E, Manning WJ, Martin ET, Smith JM, Wilke N, Shellock FS (2007) Safety of magnetic resonance imaging in patients with cardiovascular devices: an American Heart Association scientific statement from the Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology, and the Council on Cardiovascular Radiology and Intervention: endorsed by the American College of Cardiology Foundation, the North American Society for Cardiac Imaging, and the Society for Cardiovascular Magnetic Resonance. Circulation 116(24):2878–2891

    Article  PubMed  Google Scholar 

  82. Achenbach S, Moshage W, Diem B, Bieberle T, Schibgilla V, Bachmann K (1997) Effects of magnetic resonance imaging on cardiac pacemakers and electrodes. Am Heart J 134(3):467–473

    Article  PubMed  CAS  Google Scholar 

  83. Hayes DL, Holmes DR Jr, Gray JE (1987) Effect of 1.5 Tesla nuclear magnetic resonance imaging scanner on implanted permanent pacemakers. J Am Coll Cardiol 10(4):782–786

    Article  PubMed  CAS  Google Scholar 

  84. Pennell D (1999) Cardiac magnetic resonance with a pacemaker in situ: can it be done? J Cardiovasc Magn Reson 1:72

    Google Scholar 

  85. Martin ET, Coman JA, Shellock FG, Pulling CC, Fair R, Jenkins K (2004) Magnetic resonance imaging and cardiac pacemaker safety at 1.5-Tesla. J Am Coll Cardiol 43(7):1315–1324

    Article  PubMed  Google Scholar 

  86. Lardo AC, Abraham TP, Kass DA (2005) Magnetic resonance imaging assessment of ventricular dyssynchrony: current and emerging concepts. J Am Coll Cardiol 46(12):2223–2228

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None declared

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Leyva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leyva, F., Foley, P.W.X. Current and future role of cardiovascular magnetic resonance in cardiac resynchronization therapy. Heart Fail Rev 16, 251–262 (2011). https://doi.org/10.1007/s10741-010-9213-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-010-9213-3

Keywords

Navigation