Skip to main content

Advertisement

Log in

Inflammatory cytokines and nitric oxide in heart failure and potential modulation by vagus nerve stimulation

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

In heart failure, an inflammatory response may occur. The relationship between inflammatory cytokines, NOS and heart failure progression remains uncertain. Parasympathetic activation can affect heart rate and AV conduction. In heart failure, a relationship between the vagus nerve and the inflammatory response has been proposed. Vagal nerve stimulation can modulate the inflammatory response and affect specific inflammatory mediators including nitric oxide that may be contributory to continued or progressive heart failure. Therefore, vagal nerve stimulation may have beneficial effects that are independent from heart rate or AV conduction in heart failure. Challenges remain regarding the relationship between specific inflammatory markers and heart failure and how to best modulate the cytokines and NOS in patients to achieve beneficial effects. Future studies need to evaluate whether modulating inflammatory cytokines and NOS via vagal nerve stimulation can improve cardiac performance and outcomes in patients with heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zhang Y, Popovic ZB, Bibevski S et al (2009) Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail 2(6):692–699

    Article  CAS  PubMed  Google Scholar 

  2. Sabbah HNRS, Mishra S, Gupta RC, Ilsar I, Imai M, Cohen U, Ben-David T, Ben-Ezra O (2005) Long-term therapy with neuroselective electric vagus nerve stimulation improves LV function and attenuates global LV remodeling in dogs with chronic heart failure. Eur J Heart Fail Suppl 4:166 (Abstract)

    Google Scholar 

  3. De Ferrari GM, Sanzo A, Schwartz PJ (2009) Chronic vagal stimulation in patients with congestive heart failure. Conf Proc IEEE Eng Med Biol Soc 1:2037–2039

    Google Scholar 

  4. Olshansky B, Sabbah HN, Hauptman PJ, Colucci WS (2008) Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation 118(8):863–871

    Article  PubMed  Google Scholar 

  5. Schwartz PJ, De Ferrari GM, Sanzo A et al (2008) Long term vagal stimulation in patients with advanced heart failure: first experience in man. Eur J Heart Fail 10(9):884–891

    Article  PubMed  Google Scholar 

  6. Schwartz PJ, De Ferrari GM (2009) Vagal stimulation for heart failure: background and first in-man study. Heart Rhythm 6(11 Suppl):S76–S81

    Article  PubMed  Google Scholar 

  7. Aukrust P, Gullestad L, Ueland T, Damas JK, Yndestad A (2005) Inflammatory and anti-inflammatory cytokines in chronic heart failure: potential therapeutic implications. Ann Med 37(2):74–85

    Article  CAS  PubMed  Google Scholar 

  8. Gong KZ, Song G, Spiers JP, Kelso EJ, Zhang ZG (2007) Activation of immune and inflammatory systems in chronic heart failure: novel therapeutic approaches. Int J Clin Pract 61(4):611–621

    Article  CAS  PubMed  Google Scholar 

  9. Jankowska EA, Ponikowski P, Piepoli MF, Banasiak W, Anker SD, Poole-Wilson PA (2006) Autonomic imbalance and immune activation in chronic heart failure—pathophysiological links. Cardiovasc Res 70(3):434–445

    Article  CAS  PubMed  Google Scholar 

  10. Pavlov VA, Tracey KJ (2005) The cholinergic anti-inflammatory pathway. Brain Behav Immun 19(6):493–499

    Article  CAS  PubMed  Google Scholar 

  11. Tracey KJ (2007) Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest 117(2):289–296

    Article  CAS  PubMed  Google Scholar 

  12. Blum A, Miller H (2001) Pathophysiological role of cytokines in congestive heart failure. Annu Rev Med 52:15–27

    Article  CAS  PubMed  Google Scholar 

  13. Mann DL (2002) Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res 91(11):988–998

    Article  CAS  PubMed  Google Scholar 

  14. Chen D, Assad-Kottner C, Orrego C, Torre-Amione G (2008) Cytokines and acute heart failure. Crit Care Med 36(1 Suppl):S9–16

    Article  CAS  PubMed  Google Scholar 

  15. Vistnes M, Waehre A, Nygard S et al. (2010) Circulating cytokine levels in mice with heart failure are etiology-dependent. J Appl Physiol 108(5):1357–1364

    Article  CAS  PubMed  Google Scholar 

  16. Aukrust P, Ueland T, Muller F et al (1998) Elevated circulating levels of C-C chemokines in patients with congestive heart failure. Circulation 97(12):1136–1143

    CAS  PubMed  Google Scholar 

  17. Aukrust P, Ueland T, Lien E et al (1999) Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 83(3):376–382

    Article  CAS  PubMed  Google Scholar 

  18. Testa M, Yeh M, Lee P et al (1996) Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol 28(4):964–971

    Article  CAS  PubMed  Google Scholar 

  19. Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL (1996) Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol 27(5):1201–1206

    Article  CAS  PubMed  Google Scholar 

  20. Yan AT, Yan RT, Cushman M et al. (2010) Relationship of interleukin-6 with regional and global left-ventricular function in asymptomatic individuals without clinical cardiovascular disease: insights from the multi-ethnic study of atherosclerosis. Eur Heart J 31(7):768–770

    Article  Google Scholar 

  21. Wirtz PH, Redwine LS, Linke S et al (2010) Circulating levels of soluble intercellular adhesion molecule-1 (sICAM-1) independently predict depressive symptom severity after 12 months in heart failure patients. Brain Behav Immun 24(3):366–369

    Article  CAS  PubMed  Google Scholar 

  22. Alvarez-Guardia D, Palomer X, Coll T et al. (2010) The p65 subunit of NF-{kappa}B binds to PGC-1{alpha} linking inflammation and metabolic disturbances in cardiac cells. Cardiovasc Res

  23. von Haehling S, Schefold JC, Lainscak M, Doehner W, Anker SD (2009) Inflammatory biomarkers in heart failure revisited: much more than innocent bystanders. Heart Fail Clin 5(4):549–560

    Article  Google Scholar 

  24. Mehta JL, Li DY (1999) Inflammation in ischemic heart disease: response to tissue injury or a pathogenetic villain? Cardiovasc Res 43(2):291–299

    Article  CAS  PubMed  Google Scholar 

  25. Hamid T, Gu Y, Ortines RV et al (2009) Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation. Circulation 119(10):1386–1397

    Article  CAS  PubMed  Google Scholar 

  26. Kang YM, Zhang ZH, Xue B, Weiss RM, Felder RB (2008) Inhibition of brain proinflammatory cytokine synthesis reduces hypothalamic excitation in rats with ischemia-induced heart failure. Am J Physiol Heart Circ Physiol 295(1):H227–H236

    Article  CAS  PubMed  Google Scholar 

  27. Matsumori A (2007) Treatment options in myocarditis: what we know from experimental data and how it translates to clinical trials. Herz 32(6):452–456

    Article  PubMed  Google Scholar 

  28. Vallejo J, Mann DL (2003) Antiinflammatory therapy in myocarditis. Curr Opin Cardiol 18(3):189–193

    Article  PubMed  Google Scholar 

  29. Smeets PJ, Teunissen BE, Planavila A et al (2008) Inflammatory pathways are activated during cardiomyocyte hypertrophy and attenuated by peroxisome proliferator-activated receptors PPARalpha and PPARdelta. J Biol Chem 283(43):29109–29118

    Article  CAS  PubMed  Google Scholar 

  30. Dinh W, Futh R, Nickl W et al. (2009) Elevated plasma levels of TNF-alpha and interleukin-6 in patients with diastolic dysfunction and glucose metabolism disorders. Cardiovasc Diabetol 8:58

    Google Scholar 

  31. Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL (2001) Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation 103(16):2055–2059

    CAS  PubMed  Google Scholar 

  32. Kubota T, McTiernan CF, Frye CS et al (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 81(4):627–635

    CAS  PubMed  Google Scholar 

  33. Oke SL, Tracey KJ (2008) From CNI-1493 to the immunological homunculus: physiology of the inflammatory reflex. J Leukoc Biol 83(3):512–517

    Article  CAS  PubMed  Google Scholar 

  34. Tracey KJ (2002) The inflammatory reflex. Nature 420(6917):853–859

    Article  CAS  PubMed  Google Scholar 

  35. Sternberg EM (1997) Neural-immune interactions in health and disease. J Clin Invest 100(11):2641–2647

    Article  CAS  PubMed  Google Scholar 

  36. Bernik TR, Friedman SG, Ochani M et al (2002) Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med 195(6):781–788

    Article  CAS  PubMed  Google Scholar 

  37. Nathan C (2002) Points of control in inflammation. Nature 420(6917):846–852

    Article  CAS  PubMed  Google Scholar 

  38. de Jonge WJ, van der Zanden EP, The FO et al (2005) Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol 6(8):844–851

    Article  PubMed  Google Scholar 

  39. Borovikova LV, Ivanova S, Zhang M et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462

    Article  CAS  PubMed  Google Scholar 

  40. Mann DL, McMurray JJ, Packer M et al (2004) Targeted anticytokine therapy in patients with chronic heart failure: results of the randomized etanercept worldwide evaluation (RENEWAL). Circulation 109(13):1594–1602

    Article  CAS  PubMed  Google Scholar 

  41. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 107(25):3133–3140

    Article  CAS  PubMed  Google Scholar 

  42. Anker SD, Coats AJ (2002) How to recover from renaissance? The significance of the results of recover, renaissance, renewal and attach. Int J Cardiol 86(2–3):123–130

    Article  PubMed  Google Scholar 

  43. Torre-Amione G, Anker SD, Bourge RC et al (2008) Results of a non-specific immunomodulation therapy in chronic heart failure (ACCLAIM trial): a placebo-controlled randomised trial. Lancet 371(9608):228–236

    Article  CAS  PubMed  Google Scholar 

  44. Heymans S, Hirsch E, Anker SD et al (2009) Inflammation as a therapeutic target in heart failure? A scientific statement from the translational research committee of the heart failure association of the European society of cardiology. Eur J Heart Fail 11(2):119–129

    Article  CAS  PubMed  Google Scholar 

  45. Wang H, Yu M, Ochani M et al (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421(6921):384–388

    Article  CAS  PubMed  Google Scholar 

  46. Li T, Zuo X, Zhou Y et al. (2009) The vagus nerve and nicotinic receptors involve inhibition of HMGB1 release and early pro-inflammatory cytokines function in collagen-induced arthritis. J Clin Immunol 30(2):213–220

    Article  PubMed  Google Scholar 

  47. Wang H, Liao H, Ochani M et al (2004) Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med 10(11):1216–1221

    Article  CAS  PubMed  Google Scholar 

  48. Sloan RP, McCreath H, Tracey KJ, Sidney S, Liu K, Seeman T (2007) RR interval variability is inversely related to inflammatory markers: the CARDIA study. Mol Med 13(3–4):178–184

    PubMed  Google Scholar 

  49. Metz CN, Tracey KJ (2005) It takes nerve to dampen inflammation. Nat Immunol 6(8):756–757

    Article  CAS  PubMed  Google Scholar 

  50. Liu H, Yao YM, Dong YQ, Yu Y, Sheng ZY (2005) The role of Janus kinase-signal transducer and transcription activator pathway in the regulation of synthesis and release of lipopolysaccharide-induced high mobility group box-1 protein. Zhonghua Shao Shang Za Zhi 21(6):414–417

    CAS  PubMed  Google Scholar 

  51. Barouch LA, Harrison RW, Skaf MW et al (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416(6878):337–339

    CAS  PubMed  Google Scholar 

  52. Ziolo MT, Kohr MJ, Wang H (2008) Nitric oxide signaling and the regulation of myocardial function. J Mol Cell Cardiol 45(5):625–632

    Article  CAS  PubMed  Google Scholar 

  53. Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K (2004) Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 109(1):120–124

    Article  PubMed  Google Scholar 

  54. Herring N, Danson EJ, Paterson DJ (2002) Cholinergic control of heart rate by nitric oxide is site specific. News Physiol Sci 17:202–206

    CAS  PubMed  Google Scholar 

  55. Han X, Kobzik L, Severson D, Shimoni Y (1998) Characteristics of nitric oxide-mediated cholinergic modulation of calcium current in rabbit sino-atrial node. J Physiol 509(Pt 3):741–754

    Article  CAS  PubMed  Google Scholar 

  56. Wang H, Kohr MJ, Wheeler DG, Ziolo MT (2008) Endothelial nitric oxide synthase decreases beta-adrenergic responsiveness via inhibition of the L-type Ca2 + current. Am J Physiol Heart Circ Physiol 294(3):H1473–H1480

    Article  CAS  PubMed  Google Scholar 

  57. Ruetten H, Dimmeler S, Gehring D, Ihling C, Zeiher AM (2005) Concentric left ventricular remodeling in endothelial nitric oxide synthase knockout mice by chronic pressure overload. Cardiovasc Res 66(3):444–453

    Article  CAS  PubMed  Google Scholar 

  58. Choate JK, Danson EJ, Morris JF, Paterson DJ (2001) Peripheral vagal control of heart rate is impaired in neuronal NOS knockout mice. Am J Physiol Heart Circ Physiol 281(6):H2310–H2317

    CAS  PubMed  Google Scholar 

  59. Dawson D, Lygate CA, Zhang MH, Hulbert K, Neubauer S, Casadei B (2005) nNOS gene deletion exacerbates pathological left ventricular remodeling and functional deterioration after myocardial infarction. Circulation 112(24):3729–3737

    Article  CAS  PubMed  Google Scholar 

  60. Vandsburger MH, French BA, Helm PA et al (2007) Multi-parameter in vivo cardiac magnetic resonance imaging demonstrates normal perfusion reserve despite severely attenuated beta-adrenergic functional response in neuronal nitric oxide synthase knockout mice. Eur Heart J 28(22):2792–2798

    Article  CAS  PubMed  Google Scholar 

  61. Wang H, Kohr MJ, Traynham CJ, Wheeler DG, Janssen PM, Ziolo MT (2008) Neuronal nitric oxide synthase signaling within cardiac myocytes targets phospholamban. Am J Physiol Cell Physiol 294(6):C1566–C1575

    Article  CAS  PubMed  Google Scholar 

  62. Ziolo MT, Harshbarger CH, Roycroft KE et al (2001) Myocytes isolated from rejecting transplanted rat hearts exhibit a nitric oxide-mediated reduction in the calcium current. J Mol Cell Cardiol 33(9):1691–1699

    Article  CAS  PubMed  Google Scholar 

  63. Paz Y, Frolkis I, Pevni D et al (2003) Effect of tumor necrosis factor-alpha on endothelial and inducible nitric oxide synthase messenger ribonucleic acid expression and nitric oxide synthesis in ischemic and nonischemic isolated rat heart. J Am Coll Cardiol 42(7):1299–1305

    Article  CAS  PubMed  Google Scholar 

  64. Wildhirt SM, Weismueller S, Schulze C, Conrad N, Kornberg A, Reichart B (1999) Inducible nitric oxide synthase activation after ischemia/reperfusion contributes to myocardial dysfunction and extent of infarct size in rabbits: evidence for a late phase of nitric oxide-mediated reperfusion injury. Cardiovasc Res 43(3):698–711

    Article  CAS  PubMed  Google Scholar 

  65. Ichinose F, Hataishi R, Wu JC et al (2003) A selective inducible NOS dimerization inhibitor prevents systemic, cardiac, and pulmonary hemodynamic dysfunction in endotoxemic mice. Am J Physiol Heart Circ Physiol 285(6):H2524–H2530

    CAS  PubMed  Google Scholar 

  66. Ziolo MT, Maier LS, Piacentino V 3rd, Bossuyt J, Houser SR, Bers DM (2004) Myocyte nitric oxide synthase 2 contributes to blunted beta-adrenergic response in failing human hearts by decreasing Ca2 + transients. Circulation 109(15):1886–1891

    Article  CAS  PubMed  Google Scholar 

  67. Umar S, van der Laarse A (2010) Nitric oxide and nitric oxide synthase isoforms in the normal, hypertrophic, and failing heart. Mol Cell Biochem 333(1–2):191–201

    Article  CAS  PubMed  Google Scholar 

  68. Otani H (2009) The role of nitric oxide in myocardial repair and remodeling. Antioxid Redox Signal 11(8):1913–1928

    Article  CAS  PubMed  Google Scholar 

  69. Damy T, Ratajczak P, Shah AM et al (2004) Increased neuronal nitric oxide synthase-derived NO production in the failing human heart. Lancet 363(9418):1365–1367

    Article  CAS  PubMed  Google Scholar 

  70. Ferreiro CR, Chagas AC, Carvalho MH et al (2004) Expression of inducible nitric oxide synthase is increased in patients with heart failure due to ischemic disease. Braz J Med Biol Res 37(9):1313–1320

    Article  CAS  PubMed  Google Scholar 

  71. Ishibashi Y, Takahashi N, Tokumaru A et al (2008) Activation of inducible NOS in peripheral vessels and outcomes in heart failure patients. J Card Fail 14(9):724–731

    Article  CAS  PubMed  Google Scholar 

  72. Fraccarollo D, Widder JD, Galuppo P et al (2008) Improvement in left ventricular remodeling by the endothelial nitric oxide synthase enhancer AVE9488 after experimental myocardial infarction. Circulation 118(8):818–827

    Article  CAS  PubMed  Google Scholar 

  73. Massion PB, Balligand JL (2007) Relevance of nitric oxide for myocardial remodeling. Curr Heart Fail Rep 4(1):18–25

    Article  CAS  PubMed  Google Scholar 

  74. Lim G, Venetucci L, Eisner DA, Casadei B (2008) Does nitric oxide modulate cardiac ryanodine receptor function? Implications for excitation-contraction coupling. Cardiovasc Res 77(2):256–264

    Article  CAS  PubMed  Google Scholar 

  75. Silberman GA, Fan TH, Liu H et al. (2010) Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction. Circulation 121(4):519–528

    Google Scholar 

  76. Loyer X, Heymes C, Samuel JL (2008) Constitutive nitric oxide synthases in the heart from hypertrophy to failure. Clin Exp Pharmacol Physiol 35(4):483–488

    Article  CAS  PubMed  Google Scholar 

  77. Hare JM, Keaney JF Jr, Balligand JL, Loscalzo J, Smith TW, Colucci WS (1995) Role of nitric oxide in parasympathetic modulation of beta-adrenergic myocardial contractility in normal dogs. J Clin Invest 95(1):360–366

    Article  CAS  PubMed  Google Scholar 

  78. Brack KE, Patel VH, Mantravardi R, Coote JH, Ng GA (2009) Direct evidence of nitric oxide release from neuronal nitric oxide synthase activation in the left ventricle as a result of cervical vagus nerve stimulation. J Physiol 587(Pt 12):3045–3054

    Article  CAS  PubMed  Google Scholar 

  79. Brack KE, Patel VH, Coote JH, Ng GA (2007) Nitric oxide mediates the vagal protective effect on ventricular fibrillation via effects on action potential duration restitution in the rabbit heart. J Physiol 583(Pt 2):695–704

    Article  CAS  PubMed  Google Scholar 

  80. Sears CE, Choate JK, Paterson DJ (1999) NO-cGMP pathway accentuates the decrease in heart rate caused by cardiac vagal nerve stimulation. J Appl Physiol 86(2):510–516

    CAS  PubMed  Google Scholar 

  81. Herring N, Golding S, Paterson DJ (2000) Pre-synaptic NO-cGMP pathway modulates vagal control of heart rate in isolated adult guinea pig atria. J Mol Cell Cardiol 32(10):1795–1804

    Article  CAS  PubMed  Google Scholar 

  82. Conlon K, Kidd C (1999) Neuronal nitric oxide facilitates vagal chronotropic and dromotropic actions on the heart. J Auton Nerv Syst 75(2–3):136–146

    Article  CAS  PubMed  Google Scholar 

  83. Jumrussirikul P, Dinerman J, Dawson TM et al (1998) Interaction between neuronal nitric oxide synthase and inhibitory G protein activity in heart rate regulation in conscious mice. J Clin Invest 102(7):1279–1285

    Article  CAS  PubMed  Google Scholar 

  84. Herring N, Paterson DJ (2001) Nitric oxide-cGMP pathway facilitates acetylcholine release and bradycardia during vagal nerve stimulation in the guinea-pig in vitro. J Physiol 535(Pt 2):507–518

    Article  CAS  PubMed  Google Scholar 

  85. Sabbah HN, Goldberg AD, Schoels W et al (1992) Spontaneous and inducible ventricular arrhythmias in a canine model of chronic heart failure: relation to haemodynamics and sympathoadrenergic activation. Eur Heart J 13(11):1562–1572

    CAS  PubMed  Google Scholar 

  86. Sabbah HN, Gupta RC, Rastogi S, Mishra S, Mika Y, Burkhoff D (2006) Treating heart failure with cardiac contractility modulation electrical signals. Curr Heart Fail Rep 3(1):21–24

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Drs. K. J. Tracy, R. Felder and M. Chapleau for helpful discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Olshansky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Olshansky, B. Inflammatory cytokines and nitric oxide in heart failure and potential modulation by vagus nerve stimulation. Heart Fail Rev 16, 137–145 (2011). https://doi.org/10.1007/s10741-010-9184-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-010-9184-4

Keywords

Navigation