Skip to main content

Advertisement

Log in

Arrhythmias and vagus nerve stimulation

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Enhancing vagal tone by delivering electrical stimulation to the vagal nerves (VNS) is emerging as a promising novel therapy in heart failure. In addition, VNS is already an FDA-approved therapy for refractory epilepsy and depression. Besides its well-known negative chronotropic, inotropic, and dromotropic effects, VNS has profound effects on cardiac electrophysiology and arrhythmogenesis. This review summarizes current knowledge about the complex relationship between VNS and cardiac arrhythmias. Specifically, the focus is on VNS capability to become a therapeutic strategy along with important electrophysiological alterations that may constitute a potential arrhythmogenic substrate and become a clinical concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Levy MN (1984) Cardiac sympathetic-parasympathetic interactions. Fed Proc 43:2598–2602

    CAS  PubMed  Google Scholar 

  2. Ansari S, Chaudhri K, Al Moutaery KA (2007) Vagus nerve stimulation: indications and limitations. Acta Neurochir Suppl 97:281–286

    Article  CAS  PubMed  Google Scholar 

  3. Milby AH, Halpern CH, Baltuch GH (2008) Vagus nerve stimulation for epilepsy and depression. Neurotherapeutics 5:75–85

    Article  PubMed  Google Scholar 

  4. Schlaepfer TE, Frick C, Zobel A, Maier W, Heuser I, Bajbouj M, O’Keane V, Corcoran C, Adolfsson R, Trimble M, Rau H, Hoff HJ, Padberg F, Muller-Siecheneder F, Audenaert K, Van den Abbeele D, Stanga Z, Hasdemir M (2008) Vagus nerve stimulation for depression: efficacy and safety in a European study. Psychol Med 38:651–661

    Article  CAS  PubMed  Google Scholar 

  5. Schwartz PJ, De Ferrari GM, Sanzo A, Landolina M, Rordorf R, Raineri C, Campana C, Revera M, jmone-Marsan N, Tavazzi L, Odero A (2008) Long term vagal stimulation in patients with advanced heart failure first experience in man. Eur J Heart Fail 10:884–891

    Article  PubMed  Google Scholar 

  6. Schachter SC, Saper CB (1998) Vagus nerve stimulation. Epilepsia 39:677–686

    Article  CAS  PubMed  Google Scholar 

  7. Grimm S, Bajbouj M (2010) Efficacy of vagus nerve stimulation in the treatment of depression. Expert Rev Neurother 10:87–92

    Article  CAS  PubMed  Google Scholar 

  8. Ben-Menachem E (2002) Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol 1:477–482

    Article  PubMed  Google Scholar 

  9. Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K (2004) Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 109:120–124

    Article  PubMed  Google Scholar 

  10. Zhang Y, Popovic ZB, Bibevski S, Fakhry I, Sica DA, Van Wagoner DR, Mazgalev TN (2009) Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail 2:692–699

    Article  CAS  PubMed  Google Scholar 

  11. Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA (1997) Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec 247:289–298

    Article  CAS  PubMed  Google Scholar 

  12. Yuan BX, Ardell JL, Hopkins DA, Losier AM, Armour JA (1994) Gross and microscopic anatomy of the canine intrinsic cardiac nervous system. Anat Rec 239:75–87

    Article  CAS  PubMed  Google Scholar 

  13. Pauza DH, Skripka V, Pauziene N (2002) Morphology of the intrinsic cardiac nervous system in the dog: a whole-mount study employing histochemical staining with acetylcholinesterase. Cells Tissues Organs 172:297–320

    Article  PubMed  Google Scholar 

  14. Pauza DH, Skripka V, Pauziene N, Stropus R (2000) Morphology, distribution, and variability of the epicardiac neural ganglionated subplexuses in the human heart. Anat Rec 259:353–382

    Article  CAS  PubMed  Google Scholar 

  15. Kawano H, Okada R, Yano K (2003) Histological study on the distribution of autonomic nerves in the human heart. Heart Vessels 18:32–39

    Article  PubMed  Google Scholar 

  16. Hou Y, Scherlag BJ, Lin J, Zhang Y, Lu Z, Truong K, Patterson E, Lazzara R, Jackman WM, Po SS (2007) Ganglionated plexi modulate extrinsic cardiac autonomic nerve input: effects on sinus rate, atrioventricular conduction, refractoriness, and inducibility of atrial fibrillation. J Am Coll Cardiol 50:61–68

    Article  PubMed  Google Scholar 

  17. Lin J, Scherlag BJ, Niu G, Lu Z, Patterson E, Liu S, Lazzara R, Jackman WM, Po SS (2009) Autonomic elements within the ligament of Marshall and inferior left ganglionated plexus mediate functions of the atrial neural network. J Cardiovasc Electrophysiol 20:318–324

    Article  PubMed  Google Scholar 

  18. Ardell JL, Randall WC (1986) Selective vagal innervation of sinoatrial and atrioventricular nodes in canine heart. Am J Physiol 251:H764–H773

    CAS  PubMed  Google Scholar 

  19. Randall WC, Ardell JL, O’Toole MF, Wurster RD (1988) Differential autonomic control of SAN and AVN regions of the canine heart: structure and function. Prog Clin Biol Res 275:15–31

    CAS  PubMed  Google Scholar 

  20. Yuan BX, Ardell JL, Hopkins DA, Armour JA (1993) Differential cardiac responses induced by nicotine sensitive canine atrial and ventricular neurones. Cardiovasc Res 27:760–769

    Article  CAS  PubMed  Google Scholar 

  21. Dickerson LW, Rodak DJ, Fleming TJ, Gatti PJ, Massari VJ, McKenzie JC, Gillis RA (1998) Parasympathetic neurons in the cranial medial ventricular fat pad on the dog heart selectively decrease ventricular contractility. J Auton Nerv Syst 70:129–141

    Article  CAS  PubMed  Google Scholar 

  22. Wallick DW, Zhang Y, Tabata T, Zhuang S, Mowrey KA, Watanabe J, Greenberg NL, Grimm RA, Mazgalev TN (2001) Selective AV nodal vagal stimulation improves hemodynamics during acute atrial fibrillation in dogs. Am J Physiol 281:H1490–H1497

    CAS  Google Scholar 

  23. Zhang Y, Kei M, Mazgalev TN (2007) A novel strategy to preserve positive inotropic effects of dobutamine while avoiding sinus tachycardia: selective vagal stimulation (Abstract). Heart Rhythm 4:S172

    Google Scholar 

  24. Zhang Y, Yamada H, Bibevski S, Zhuang S, Mowrey KA, Wallick DW, Oh S, Mazgalev TN (2005) Chronic atrioventricular nodal vagal stimulation: first evidence for long-term ventricular rate control in canine atrial fibrillation model. Circulation 112:2904–2911

    PubMed  Google Scholar 

  25. DiFrancesco D, Ducouret P, Robinson RB (1989) Muscarinic modulation of cardiac rate at low acetylcholine concentrations. Science 243:669–671

    Article  CAS  PubMed  Google Scholar 

  26. van Borren MM, Verkerk AO, Wilders R, Hajji N, Zegers JG, Bourier J, Tan HL, Verheijck EE, Peters SL, Alewijnse AE, Ravesloot JH (2010) Effects of muscarinic receptor stimulation on Ca2 + transient, cAMP production and pacemaker frequency of rabbit sinoatrial node cells. Basic Res Cardiol 105:73–87

    Article  CAS  PubMed  Google Scholar 

  27. Nishimura M, Habuchi Y, Hiromasa S, Watanabe Y (1988) Ionic basis of depressed automaticity and conduction by acetylcholine in rabbit AV node. Am J Physiol 255:H7–H14

    CAS  PubMed  Google Scholar 

  28. Boyett MR, Honjo H, Kodama I (2000) The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res 47:658–687

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Ilsar I, Sabbah HN, Ben DT, Mazgalev TN (2009) Relationship between right cervical vagus nerve stimulation and atrial fibrillation inducibility: therapeutic intensities do not increase arrhythmogenesis. Heart Rhythm 6:244–250

    Article  PubMed  Google Scholar 

  30. Schauerte P, Scherlag BJ, Pitha J, Scherlag MA, Reynolds D, Lazzara R, Jackman WM (2000) Catheter ablation of cardiac autonomic nerves for prevention of vagal atrial fibrillation. Circulation 102:2774–2780

    CAS  PubMed  Google Scholar 

  31. Lemola K, Chartier D, Yeh YH, Dubuc M, Cartier R, Armour A, Ting M, Sakabe M, Shiroshita-Takeshita A, Comtois P, Nattel S (2008) Pulmonary vein region ablation in experimental vagal atrial fibrillation: role of pulmonary veins versus autonomic ganglia. Circulation 117:470–477

    Article  PubMed  Google Scholar 

  32. Matheny RG, Shaar CJ (1997) Vagus nerve stimulation as a method to temporarily slow or arrest the heart. Ann Thorac Surg 63:S28–S29

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Mazgalev TN (2009) Cardiac vagal stimulation eliminates detrimental tachycardia effects of dobutamine used for inotropic support. Ann Thorac Surg 88:117–122

    Article  PubMed  Google Scholar 

  34. Wallick DW, Martin PJ (1990) Separate parasympathetic control of heart rate and atrioventricular conduction of dogs. Am J Physiol 259:H536–H542

    CAS  PubMed  Google Scholar 

  35. Yusuf S, Camm AJ (2005) The sinus tachycardias. Nat Clin Pract Cardiovasc Med 2:44–52

    Article  PubMed  Google Scholar 

  36. Leon H, Guzman JC, Kuusela T, Dillenburg R, Kamath M, Morillo CA (2005) Impaired baroreflex gain in patients with inappropriate sinus tachycardia. J Cardiovasc Electrophysiol 16:64–68

    Article  PubMed  Google Scholar 

  37. Ardesch JJ, Buschman HP, van der Burgh PH, Wagener-Schimmel LJ, van der Aa HE, Hageman G (2007) Cardiac responses of vagus nerve stimulation: intraoperative bradycardia and subsequent chronic stimulation. Clin Neurol Neurosurg 109:849–852

    Article  CAS  PubMed  Google Scholar 

  38. Amark P, Stodberg T, Wallstedt L (2007) Late onset bradyarrhythmia during vagus nerve stimulation. Epilepsia 48:1023–1024

    Article  PubMed  Google Scholar 

  39. Tatum WO, Vale FL (2009) Vagus nerve stimulation and cardiac asystole. Epilepsia 50:2671–2672

    Article  PubMed  Google Scholar 

  40. Asconape JJ, Moore DD, Zipes DP, Hartman LM, Duffell WH Jr (1999) Bradycardia and asystole with the use of vagus nerve stimulation for the treatment of epilepsy: a rare complication of intraoperative device testing. Epilepsia 40:1452–1454

    Article  CAS  PubMed  Google Scholar 

  41. Tatum WO, Moore DB, Stecker MM, Baltuch GH, French JA, Ferreira JA, Carney PM, Labar DR, Vale FL (1999) Ventricular asystole during vagus nerve stimulation for epilepsy in humans. Neurology 52:1267–1269

    PubMed  Google Scholar 

  42. Pachon JC, Pachon EI, Pachon JC, Lobo TJ, Pachon MZ, Vargas RN, Jatene AD (2005) “Cardioneuroablation”—new treatment for neurocardiogenic syncope, functional AV block and sinus dysfunction using catheter RF-ablation. Europace 7:1–13

    Article  PubMed  Google Scholar 

  43. Prystowsky EN, Naccarelli GV, Jackman WM, Rinkenberger RL, Heger JJ, Zipes DP (1983) Enhanced parasympathetic tone shortens atrial refractoriness in man. Am J Cardiol 51:96–100

    Article  CAS  PubMed  Google Scholar 

  44. Tamargo J, Caballero R, Gomez R, Valenzuela C, Delpon E (2004) Pharmacology of cardiac potassium channels. Cardiovasc Res 62:9–33

    Article  CAS  PubMed  Google Scholar 

  45. Wickman K, Clapham DE (1995) Ion channel regulation by G proteins. Physiol Rev 75:865–885

    CAS  PubMed  Google Scholar 

  46. Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) The beta gamma subunits of GTP-binding proteins activate the muscarinic K + channel in heart. Nature 325:321–326

    Article  CAS  PubMed  Google Scholar 

  47. Rosenshtraukh LV, Zaitsev AV, Fast VG, Pertsov AM, Krinsky VI (1991) Vagally induced depression of impulse propagation as a cause of atrial tachycardia. J Mol Cell Cardiol 23(Suppl 1):3–9

    Article  PubMed  Google Scholar 

  48. Liu L, Nattel S (1997) Differing sympathetic and vagal effects on atrial fibrillation in dogs: role of refractoriness heterogeneity. Am J Physiol 273:H805–H816

    CAS  PubMed  Google Scholar 

  49. Smeets JL, Allessie MA, Lammers WJ, Bonke FI, Hollen J (1986) The wavelength of the cardiac impulse and reentrant arrhythmias in isolated rabbit atrium. The role of heart rate, autonomic transmitters, temperature, and potassium. Circ Res 58:96–108

    CAS  PubMed  Google Scholar 

  50. Allessie M (1998) Atrial electrophysiologic remodeling: another vicious circle? J Cardiovasc Electrophysiol 9:1378–1393

    Article  CAS  PubMed  Google Scholar 

  51. Arora R, Ulphani JS, Villuendas R, Ng J, Harvey L, Thordson S, Inderyas F, Lu Y, Gordon D, Denes P, Greene R, Crawford S, Decker R, Morris A, Goldberger J, Kadish AH (2008) Neural substrate for atrial fibrillation: implications for targeted parasympathetic blockade in the posterior left atrium. Am J Physiol Heart Circ Physiol 294:H134–H144

    Article  CAS  PubMed  Google Scholar 

  52. Wang J, Liu L, Feng J, Nattel S (1996) Regional and functional factors determining induction and maintenance of atrial fibrillation in dogs. Am J Physiol 271:H148–H158

    CAS  PubMed  Google Scholar 

  53. Chen YJ, Chen YC, Yeh HI, Lin CI, Chen SA (2002) Electrophysiology and arrhythmogenic activity of single cardiomyocytes from canine superior vena cava. Circulation 105:2679–2685

    Article  PubMed  Google Scholar 

  54. Chen YJ, Chen SA, Chen YC, Yeh HI, Chang MS, Lin CI (2002) Electrophysiology of single cardiomyocytes isolated from rabbit pulmonary veins: implication in initiation of focal atrial fibrillation. Basic Res Cardiol 97:26–34

    Article  PubMed  Google Scholar 

  55. Tai CT, Chiou CW, Wen ZC, Hsieh MH, Tsai CF, Lin WS, Chen CC, Lin YK, Yu WC, Ding YA, Chang MS, Chen SA (2000) Effect of phenylephrine on focal atrial fibrillation originating in the pulmonary veins and superior vena cava. J Am Coll Cardiol 36:788–793

    Article  CAS  PubMed  Google Scholar 

  56. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA (1995) Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92:1954–1968

    CAS  PubMed  Google Scholar 

  57. Andrus EC, Carter EP (1930) The refractory period of the normally-beating dog’s auricle; with a note on the occurrence of auricular fibrillation following a single stimulus. J Exp Med 51:357–368

    Article  CAS  PubMed  Google Scholar 

  58. Wang Z, Page P, Nattel S (1992) Mechanism of flecainide’s antiarrhythmic action in experimental atrial fibrillation. Circ Res 71:271–287

    CAS  PubMed  Google Scholar 

  59. Allessie MA, Lammers WJEP, Bonke FI, Holten J (1985) Experimental evaluation of Moe’s multiple wavelet hypothesis of atrial fibrillation. In: Zipes DP, Jalife J (eds) Cardiac electrophysiology and arrhythmias. Grunr & Stratton Inc., Orlando, pp 265–275

    Google Scholar 

  60. Katsouras G, Sakabe M, Comtois P, Maguy A, Burstein B, Guerra PG, Talajic M, Nattel S (2009) Differences in atrial fibrillation properties under vagal nerve stimulation versus atrial tachycardia remodeling. Heart Rhythm 6:1465–1472

    Article  PubMed  Google Scholar 

  61. Zhang Y, Scherlag BJ, Lu Z, Niu GD, Yamanashi WS, Hogan C, Fields J, Ghias M, Lazzara R, Jackman WM, Po S (2009) Comparison of atrial fibrillation inducibility by electrical stimulation of either the extrinsic or the intrinsic autonomic nervous systems. J Interv Card Electrophysiol 24:5–10

    Article  PubMed  Google Scholar 

  62. Chiou CW, Eble JN, Zipes DP (1997) Efferent vagal innervation of the canine atria and sinus and atrioventricular nodes. The third fat pad. Circulation 95:2573–2584

    CAS  PubMed  Google Scholar 

  63. Coumel P (1993) Cardiac arrhythmias and the autonomic nervous system. J Cardiovasc Electrophysiol 4:338–355

    Article  CAS  PubMed  Google Scholar 

  64. Coumel P (1994) Paroxysmal atrial fibrillation: a disorder of autonomic tone? Eur Heart J 15(Suppl A):9–16

    PubMed  Google Scholar 

  65. Bettoni M, Zimmermann M (2002) Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation 105:2753–2759

    Article  PubMed  Google Scholar 

  66. Tomita T, Takei M, Saikawa Y, Hanaoka T, Uchikawa S, Tsutsui H, Aruga M, Miyashita T, Yazaki Y, Imamura H, Kinoshita O, Owa M, Kubo K (2003) Role of autonomic tone in the initiation and termination of paroxysmal atrial fibrillation in patients without structural heart disease. J Cardiovasc Electrophysiol 14:559–564

    Article  PubMed  Google Scholar 

  67. Fioranelli M, Piccoli M, Mileto GM, Sgreccia F, Azzolini P, Risa MP, Francardelli RL, Venturini E, Puglisi A (1999) Analysis of heart rate variability five minutes before the onset of paroxysmal atrial fibrillation. Pacing Clin Electrophysiol 22:743–749

    Article  CAS  PubMed  Google Scholar 

  68. Coccagna G, Capucci A, Bauleo S, Boriani G, Santarelli A (1997) Paroxysmal atrial fibrillation in sleep. Sleep 20:396–398

    CAS  PubMed  Google Scholar 

  69. Chen YJ, Chen SA, Tai CT, Wen ZC, Feng AN, Ding YA, Chang MS (1998) Role of atrial electrophysiology and autonomic nervous system in patients with supraventricular tachycardia and paroxysmal atrial fibrillation. J Am Coll Cardiol 32:732–738

    Article  CAS  PubMed  Google Scholar 

  70. Pappone C, Santinelli V, Manguso F, Vicedomini G, Gugliotta F, Augello G, Mazzone P, Tortoriello V, Landoni G, Zangrillo A, Lang C, Tomita T, Mesas C, Mastella E, Alfieri O (2004) Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation 109:327–334

    Article  PubMed  Google Scholar 

  71. Platt M, Mandapati R, Scherlag BJ, Yamanashi WS, Nakagawa H, Lazzara R, Jackman WM (2004) Limiting the number and extent of radiofrequency applications to terminate atrial fibrillation and subsequently prevent its inducibility. Heart Rhythm 1:S11

    Google Scholar 

  72. Scanavacca M, Pisani CF, Hachul D, Lara S, Hardy C, Darrieux F, Trombetta I, Negrao CE, Sosa E (2006) Selective atrial vagal denervation guided by evoked vagal reflex to treat patients with paroxysmal atrial fibrillation. Circulation 114:876–885

    Article  PubMed  Google Scholar 

  73. Scherlag BJ, Nakagawa H, Jackman WM, Yamanashi WS, Patterson E, Po S, Lazzara R (2005) Electrical stimulation to identify neural elements on the heart: their role in atrial fibrillation. J Interv Card Electrophysiol 13(Suppl 1):37–42

    Article  PubMed  Google Scholar 

  74. Pokushalov E, Romanov A, Shugayev P, Artyomenko S, Shirokova N, Turov A, Katritsis DG (2009) Selective ganglionated plexi ablation for paroxysmal atrial fibrillation. Heart Rhythm 6:1257–1264

    Article  PubMed  Google Scholar 

  75. Katritsis D, Giazitzoglou E, Sougiannis D, Goumas N, Paxinos G, Camm AJ (2008) Anatomic approach for ganglionic plexi ablation in patients with paroxysmal atrial fibrillation. Am J Cardiol 102:330–334

    Article  PubMed  Google Scholar 

  76. Danik S, Neuzil P, d’Avila A, Malchano ZJ, Kralovec S, Ruskin JN, Reddy VY (2008) Evaluation of catheter ablation of periatrial ganglionic plexi in patients with atrial fibrillation. Am J Cardiol 102:578–583

    Article  PubMed  Google Scholar 

  77. Verma A, Saliba WI, Lakkireddy D, Burkhardt JD, Cummings JE, Wazni OM, Belden WA, Thal S, Schweikert RA, Martin DO, Tchou PJ, Natale A (2007) Vagal responses induced by endocardial left atrial autonomic ganglion stimulation before and after pulmonary vein antrum isolation for atrial fibrillation. Heart Rhythm 4:1177–1182

    Article  PubMed  Google Scholar 

  78. Melo J, Voigt P, Sonmez B, Ferreira M, Abecasis M, Rebocho M, Timoteo A, Aguiar C, Tansal S, Arbatli H, Dion R (2004) Ventral cardiac denervation reduces the incidence of atrial fibrillation after coronary artery bypass grafting. J Thorac Cardiovasc Surg 127:511–516

    Article  PubMed  Google Scholar 

  79. Oh S, Zhang Y, Bibevski S, Marrouche NF, Natale A, Mazgalev TN (2006) Vagal denervation and atrial fibrillation inducibility: epicardial fat pad ablation does not have long-term effects. Heart Rhythm 3:701–708

    Article  PubMed  Google Scholar 

  80. Sakamoto S, Schuessler RB, Lee AM, Aziz A, Lall SC, Damiano RJ Jr (2010) Vagal denervation and reinnervation after ablation of ganglionated plexi. J Thorac Cardiovasc Surg 139:444–452

    Article  PubMed  Google Scholar 

  81. Ben-Menachem E (2001) Vagus nerve stimulation, side effects, and long-term safety. J Clin Neurophysiol 18:415–418

    Article  CAS  PubMed  Google Scholar 

  82. Srinivasan B, Awasthi A (2004) Transient atrial fibrillation after the implantation of a vagus nerve stimulator. Epilepsia 45:1645

    Article  PubMed  Google Scholar 

  83. Li D, Fareh S, Leung TK, Nattel S (1999) Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation 100:87–95

    CAS  PubMed  Google Scholar 

  84. Guerra JM, Everett TH, Lee KW, Wilson E, Olgin JE (2006) Effects of the gap junction modifier rotigaptide (ZP123) on atrial conduction and vulnerability to atrial fibrillation. Circulation 114:110–118

    Article  CAS  PubMed  Google Scholar 

  85. Shiroshita-Takeshita A, Sakabe M, Haugan K, Hennan JK, Nattel S (2007) Model-dependent effects of the gap junction conduction-enhancing antiarrhythmic peptide rotigaptide (ZP123) on experimental atrial fibrillation in dogs. Circulation 115:310–318

    Article  CAS  PubMed  Google Scholar 

  86. Fareh S, Villemaire C, Nattel S (1998) Importance of refractoriness heterogeneity in the enhanced vulnerability to atrial fibrillation induction caused by tachycardia-induced atrial electrical remodeling. Circulation 98:2202–2209

    CAS  PubMed  Google Scholar 

  87. Gaspo R, Bosch RF, Talajic M, Nattel S (1997) Functional mechanisms underlying tachycardia-induced sustained atrial fibrillation in a chronic dog model. Circulation 96:4027–4035

    CAS  PubMed  Google Scholar 

  88. Sanders P, Morton JB, Davidson NC, Spence SJ, Vohra JK, Sparks PB, Kalman JM (2003) Electrical remodeling of the atria in congestive heart failure: electrophysiological and electroanatomic mapping in humans. Circulation 108:1461–1468

    Article  PubMed  Google Scholar 

  89. Okuyama Y, Miyauchi Y, Park AM, Hamabe A, Zhou S, Hayashi H, Miyauchi M, Omichi C, Pak HN, Brodsky LA, Mandel WJ, Fishbein MC, Karagueuzian HS, Chen PS (2003) High resolution mapping of the pulmonary vein and the vein of Marshall during induced atrial fibrillation and atrial tachycardia in a canine model of pacing-induced congestive heart failure. J Am Coll Cardiol 42:348–360

    Article  PubMed  Google Scholar 

  90. Maisel WH, Stevenson LW (2003) Atrial fibrillation in heart failure: epidemiology, pathophysiology, and rationale for therapy. Am J Cardiol 91:2D–8D

    Article  PubMed  Google Scholar 

  91. Floras JS (1993) Clinical aspects of sympathetic activation and parasympathetic withdrawal in heart failure. J Am Coll Cardiol 22:72A–84A

    Article  CAS  PubMed  Google Scholar 

  92. Tisdale JE, Borzak S, Sabbah HN, Shimoyama H, Goldstein S (2006) Hemodynamic and neurohormonal predictors and consequences of the development of atrial fibrillation in dogs with chronic heart failure. J Card Fail 12:747–751

    Article  CAS  PubMed  Google Scholar 

  93. Nasr IA, Bouzamondo A, Hulot JS, Dubourg O, Le Heuzey JY, Lechat P (2007) Prevention of atrial fibrillation onset by beta-blocker treatment in heart failure: a meta-analysis. Eur Heart J 28:457–462

    Article  CAS  PubMed  Google Scholar 

  94. McMurray J, Kober L, Robertson M, Dargie H, Colucci W, Lopez-Sendon J, Remme W, Sharpe DN, Ford I (2005) Antiarrhythmic effect of carvedilol after acute myocardial infarction: results of the Carvedilol Post-Infarct Survival Control in Left Ventricular Dysfunction (CAPRICORN) trial. J Am Coll Cardiol 45:525–530

    Article  CAS  PubMed  Google Scholar 

  95. Zhang Y, Popovic ZB, Van Wagoner DR, Mazgalev TN (2009) Chronic cervical vagus nerve stimulation opposes atrial electrophysiological remodeling in heart failure. Heart Rhythm 6:S360–S361

    Google Scholar 

  96. Zhao Q, Tang Y, Okello E, Wang X, Huang C (2009) Changes in atrial effective refractory period and I(KACh) after vagal stimulation plus rapid pacing in the pulmonary vein. Rev Esp Cardiol 62:742–749

    Article  PubMed  Google Scholar 

  97. Mazgalev TN, Garrigue S, Mowrey KA, Yamanouchi Y, Tchou PJ (1999) Autonomic modification of the atrioventricular node during atrial fibrillation : role in the slowing of ventricular rate. Circulation 99:2806–2814

    CAS  PubMed  Google Scholar 

  98. Mazgalev T, Dreifus LS, Michelson EL, Pelleg A (1986) Effect of postganglionic vagal stimulation on the organization of atrioventricular nodal conduction in isolated rabbit heart tissue. Circulation 74:869–880

    CAS  PubMed  Google Scholar 

  99. Mazgalev T, Dreifus LS, Michelson EL (1988) Vagal control of the atrioventricular node–in vitro observations. I. Electrophysiological mechanism underlying the effects of brief vagal discharges on atrioventricular nodal conduction. In: Mazgalev T, Dreifus LS, Michelson EL (eds) Electrophysiology of the sinoatrial and atrioventricular nodes. Alan R. Liss Inc., New York, pp 133–154

    Google Scholar 

  100. Ali II, Pirzada NA, Kanjwal Y, Wannamaker B, Medhkour A, Koltz MT, Vaughn BV (2004) Complete heart block with ventricular asystole during left vagus nerve stimulation for epilepsy. Epilepsy Behav 5:768–771

    Article  PubMed  Google Scholar 

  101. Singleton AH, Rosenquist PB, Kimball J, McCall WV (2009) Cardiac rhythm disturbance in a depressed patient after implantation with a vagus nerve stimulator. J ECT 25:195–197

    Article  PubMed  Google Scholar 

  102. Iriarte J, Urrestarazu E, Alegre M, Macias A, Gomez A, Amaro P, Artieda J, Viteri C (2009) Late-onset periodic asystolia during vagus nerve stimulation. Epilepsia 50:928–932

    Article  PubMed  Google Scholar 

  103. Delacretaz E (2006) Clinical practice. Supraventricular tachycardia. N Engl J Med 354:1039–1051

    Article  CAS  PubMed  Google Scholar 

  104. Fuster V, Ryden LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, Halperin JL, Le Heuzey JY, Kay GN, Lowe JE, Olsson SB, Prystowsky EN, Tamargo JL, Wann S, Smith SC Jr, Jacobs AK, Adams CD, Anderson JL, Antman EM, Halperin JL, Hunt SA, Nishimura R, Ornato JP, Page RL, Riegel B, Priori SG, Blanc JJ, Budaj A, Camm AJ, Dean V, Deckers JW, Despres C, Dickstein K, Lekakis J, McGregor K, Metra M, Morais J, Osterspey A, Tamargo JL, Zamorano JL (2006) ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation–executive summary. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines, the European Society of Cardiology Committee for Practice Guidelines (writing committee to revise the 2001 guidelines for the management of patients with atrial fibrillation). Circulation 114:700–752

    Article  Google Scholar 

  105. Imaizumi S, Mazgalev T, Dreifus LS, Michelson EL, Miyagawa A, Bharati S, Lev M (1990) Morphological and electrophysiological correlates of atrioventricular nodal response to increased vagal activity. Circulation 82:951–964

    CAS  PubMed  Google Scholar 

  106. Lazzara R, Scherlag BJ, Robinson MJ, Samet P (1973) Selective in situ parasympathetic control of the canine sinoatrial and atrioventricular nodes. Circ Res 32:393–401

    CAS  PubMed  Google Scholar 

  107. Furukawa Y, Wallick DW, Carlson MD, Martin PJ (1990) Cardiac electrical responses to vagal stimulation of fibers to discrete cardiac regions. Am J Physiol 258:H1112–H1118

    CAS  PubMed  Google Scholar 

  108. Zhang Y, Mowrey KA, Zhuang S, Wallick DW, Popovic ZB, Mazgalev TN (2002) Optimal ventricular rate slowing during atrial fibrillation by feedback AV nodal-selective vagal stimulation. Am J Physiol Heart Circ Physiol 282:H1102–H1110

    CAS  PubMed  Google Scholar 

  109. Zhuang S, Zhang Y, Mowrey KA, Li J, Tabata T, Wallick DW, Popovic ZB, Grimm RA, Natale A, Mazgalev TN (2002) Ventricular rate control by selective vagal stimulation is superior to rhythm regularization by atrioventricular nodal ablation and pacing during atrial fibrillation. Circulation 106:1853–1858

    Article  PubMed  Google Scholar 

  110. Ohad DG, Sinai Y, Zaretsky A, Shofti R (2008) Ventricular rate control using a novel vagus nerve stimulating system in a dog with chronic atrial fibrillation. J Vet Cardiol 10:147–154

    Article  PubMed  Google Scholar 

  111. Mischke K, Zarse M, Schmid M, Gemein C, Hatam N, Dohmen G, Saygili E, Knackstedt C, Weis J, Pauza D, Bianchi S, Schauerte P (2010) Chronic augmentation of the parasympathetic tone to the atrioventricular node: a nonthoracotomy neurostimulation technique for ventricular rate control during atrial fibrillation. J Cardiovasc Electrophysiol 21:193–199

    Article  PubMed  Google Scholar 

  112. Quan KJ, Lee JH, van Hare GF, Biblo LA, Mackall JA, Carlson MD (2002) Identification and characterization of atrioventricular parasympathetic innervation in humans. J Cardiovasc Electrophysiol 13:735–739

    Article  PubMed  Google Scholar 

  113. Bianchi S, Rossi P, Della SA, Kornet L, Pulvirenti R, Monari G, Di RP, Schauerte P, Azzolini P (2009) Atrioventricular (AV) node vagal stimulation by transvenous permanent lead implantation to modulate AV node function: safety and feasibility in humans. Heart Rhythm 6:1282–1286

    Article  PubMed  Google Scholar 

  114. Rossi P, Bianchi S, Barretta A, Della SA, Kornet L, De PR, Bellisario A, D’Addio V, Pavaci H, Miraldi F (2008) Post-operative atrial fibrillation management by selective epicardial vagal fat pad stimulation. J Interv Card Electrophysiol 24:37–45

    Article  PubMed  Google Scholar 

  115. Hoffman BF, Suckling EE (1953) Cardiac cellular potentials; effect of vagal stimulation and acetylcholine. Am J Physiol 173:312–320

    CAS  PubMed  Google Scholar 

  116. Litovsky SH, Antzelevitch C (1990) Differences in the electrophysiological response of canine ventricular subendocardium and subepicardium to acetylcholine and isoproterenol. A direct effect of acetylcholine in ventricular myocardium. Circ Res 67:615–627

    CAS  PubMed  Google Scholar 

  117. Zang WJ, Chen LN, Yu XJ, Fang P, Lu J, Sun Q (2005) Comparison of effects of acetylcholine on electromechanical characteristics in guinea-pig atrium and ventricle. Exp Physiol 90:123–130

    Article  CAS  PubMed  Google Scholar 

  118. Koumi S, Sato R, Nagasawa K, Hayakawa H (1997) Activation of inwardly rectifying potassium channels by muscarinic receptor-linked G protein in isolated human ventricular myocytes. J Membr Biol 157:71–81

    Article  CAS  PubMed  Google Scholar 

  119. Malfatto G, Zaza A, Vanoli E, Schwartz PJ (1996) Muscarinic effects on action potential duration and its rate dependence in canine Purkinje fibers. Pacing Clin Electrophysiol 19:2023–2026

    Article  CAS  PubMed  Google Scholar 

  120. Martins JB, Zipes DP, Lund DD (1983) Distribution of local repolarization changes produced by efferent vagal stimulation in the canine ventricles. J Am Coll Cardiol 2:1191–1199

    Article  CAS  PubMed  Google Scholar 

  121. Pickoff AS, Stolfi A (1990) Modulation of electrophysiological properties of neonatal canine heart by tonic parasympathetic stimulation. Am J Physiol 258:H38–H44

    CAS  PubMed  Google Scholar 

  122. Ellenbogen KA, Smith ML, Eckberg DL (1990) Increased vagal cardiac nerve traffic prolongs ventricular refractoriness in patients undergoing electrophysiology testing. Am J Cardiol 65:1345–1350

    Article  CAS  PubMed  Google Scholar 

  123. Ng GA, Brack KE, Patel VH, Coote JH (2007) Autonomic modulation of electrical restitution, alternans and ventricular fibrillation initiation in the isolated heart. Cardiovasc Res 73:750–760

    Article  CAS  PubMed  Google Scholar 

  124. Kolman BS, Verrier RL, Lown B (1975) The effect of vagus nerve stimulation upon vulnerability of the canine ventricle: role of sympathetic-parasympathetic interactions. Circulation 52:578–585

    CAS  PubMed  Google Scholar 

  125. La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ (1998) Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (autonomic tone and reflexes after myocardial infarction) investigators. Lancet 351:478–484

    Article  CAS  PubMed  Google Scholar 

  126. Lechat P, Hulot JS, Escolano S, Mallet A, Leizorovicz A, Werhlen-Grandjean M, Pochmalicki G, Dargie H (2001) Heart rate and cardiac rhythm relationships with bisoprolol benefit in chronic heart failure in CIBIS II Trial. Circulation 103:1428–1433

    CAS  PubMed  Google Scholar 

  127. Zuanetti G, De Ferrari GM, Priori SG, Schwartz PJ (1987) Protective effect of vagal stimulation on reperfusion arrhythmias in cats. Circ Res 61:429–435

    CAS  PubMed  Google Scholar 

  128. Inagaki M, Kawada T, Lie M, Zheng C, Sunagawa K, Sugimachi M (2005) Intravascular parasympathetic cardiac nerve stimulation prevents ventricular arrhythmias during acute myocardial ischemia. Conf Proc IEEE Eng Med Biol Soc 7:7076–7079

    CAS  PubMed  Google Scholar 

  129. Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull SS Jr, Foreman RD, Schwartz PJ (1991) Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res 68:1471–1481

    CAS  PubMed  Google Scholar 

  130. Zheng C, Li M, Inagaki M, Kawada T, Sunagawa K, Sugimachi M (2005) Vagal stimulation markedly suppresses arrhythmias in conscious rats with chronic heart failure after myocardial infarction. Conf Proc IEEE Eng Med Biol Soc 7:7072–7075

    PubMed  Google Scholar 

  131. Billman GE, Schwartz PJ, Stone HL (1984) The effects of daily exercise on susceptibility to sudden cardiac death. Circulation 69:1182–1189

    CAS  PubMed  Google Scholar 

  132. Takahashi N, Ito M, Ishida S, Fujino T, Saikawa T, Arita M (1992) Effects of vagal stimulation on cesium-induced early afterdepolarizations and ventricular arrhythmias in rabbits. Circulation 86:1987–1992

    CAS  PubMed  Google Scholar 

  133. Takahashi N, Ito M, Iwao T, Ohie T, Yonemochi H, Nakagawa M, Saikawa T, Sakata T (1998) Vagal modulation of ventricular tachyarrhythmias induced by left ansae subclaviae stimulation in rabbits. Jpn Heart J 39:503–511

    CAS  PubMed  Google Scholar 

  134. Waxman MB, Sharma AD, Asta J, Cameron DA, Wald RW (1989) The protective effect of vagus nerve stimulation on catecholamine-halothane-induced ventricular fibrillation in dogs. Can J Physiol Pharmacol 67:801–809

    CAS  PubMed  Google Scholar 

  135. Kamibayashi T, Hayashi Y, Mammoto T, Yamatodani A, Sumikawa K, Yoshiya I (1995) Role of the vagus nerve in the antidysrhythmic effect of dexmedetomidine on halothane/epinephrine dysrhythmias in dogs. Anesthesiology 83:992–999

    Article  CAS  PubMed  Google Scholar 

  136. Miller RR, Olson HG, Vera Z, DeMaria AN, Amsterdam EA, Mason DT (1977) Clinical evaluation of the enhancement of vagal tone in acute myocardial infarction by edrophonium hydrochloride: effects on ventricular arrhythmias, His bundle electrography, and left ventricular function. Am Heart J 93:222–228

    Article  CAS  PubMed  Google Scholar 

  137. Osman F, Kundu S, Tuan J, Jeilan M, Stafford PJ, Andre NG (2010) Ganglionic plexus ablation during pulmonary vein isolation—predisposing to ventricular arrhythmias? Indian Pacing Electrophysiol J 10:104–107

    PubMed  Google Scholar 

  138. Ando M, Katare RG, Kakinuma Y, Zhang D, Yamasaki F, Muramoto K, Sato T (2005) Efferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin43 protein. Circulation 112:164–170

    Article  CAS  PubMed  Google Scholar 

  139. Katare RG, Ando M, Kakinuma Y, Arikawa M, Handa T, Yamasaki F, Sato T (2009) Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. J Thorac Cardiovasc Surg 137:223–231

    Article  CAS  PubMed  Google Scholar 

  140. Brack KE, Patel VH, Coote JH, Ng GA (2007) Nitric oxide mediates the vagal protective effect on ventricular fibrillation via effects on action potential duration restitution in the rabbit heart. J Physiol 583:695–704

    Article  CAS  PubMed  Google Scholar 

  141. Kakinuma Y, Akiyama T, Sato T (2009) Cholinoceptive and cholinergic properties of cardiomyocytes involving an amplification mechanism for vagal efferent effects in sparsely innervated ventricular myocardium. FEBS J 276:5111–5125

    Article  CAS  PubMed  Google Scholar 

  142. Podrid PJ, Fogel RI, Fuchs TT (1992) Ventricular arrhythmia in congestive heart failure. Am J Cardiol 69:82G–95G

    Article  CAS  PubMed  Google Scholar 

  143. Maskin CS, Siskind SJ, LeJemtel TH (1984) High prevalence of nonsustained ventricular tachycardia in severe congestive heart failure. Am Heart J 107:896–901

    Article  CAS  PubMed  Google Scholar 

  144. Olshausen KV, Witt T, Pop T, Treese N, Bethge KP, Meyer J (1991) Sudden cardiac death while wearing a Holter monitor. Am J Cardiol 67:381–386

    Article  CAS  PubMed  Google Scholar 

  145. Packer M (1985) Sudden unexpected death in patients with congestive heart failure: a second frontier. Circulation 72:681–685

    CAS  PubMed  Google Scholar 

  146. Packer M, Bristow MR, Cohn JN, Colucci WS, Fowler MB, Gilbert EM, Shusterman NH (1996) The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med 334:1349–1355

    Article  CAS  PubMed  Google Scholar 

  147. Hjalmarson A, Goldstein S, Fagerberg B, Wedel H, Waagstein F, Kjekshus J, Wikstrand J, El Allaf D, Vitovec J, Aldershvile J, Halinen M, Dietz R, Neuhaus KL, Janosi A, Thorgeirsson G, Dunselman PH, Gullestad L, Kuch J, Herlitz J, Rickenbacher P, Ball S, Gottlieb S, Deedwania P (2000) Effects of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure: the Metoprolol CR/XL Randomized Intervention Trial in congestive heart failure (MERIT-HF). MERIT-HF Study Group. JAMA 283:1295–1302

    Article  CAS  PubMed  Google Scholar 

  148. CIBIS-II Investigators and Committees (1999) The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 353:9–13

    Article  Google Scholar 

  149. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341:709–717

    Article  CAS  PubMed  Google Scholar 

  150. Zhang Y, Zhu J, Song Y (1998) Suppressing sympathetic activation with clonidine on ventricular arrhythmias in congestive heart failure. Int J Cardiol 65:233–238

    Article  CAS  PubMed  Google Scholar 

  151. Kasanuki H, Ohnishi S, Ohtuka M, Matsuda N, Nirei T, Isogai R, Shoda M, Toyoshima Y, Hosoda S (1997) Idiopathic ventricular fibrillation induced with vagal activity in patients without obvious heart disease. Circulation 95:2277–2285

    CAS  PubMed  Google Scholar 

  152. Mizumaki K, Fujiki A, Tsuneda T, Sakabe M, Nishida K, Sugao M, Inoue H (2004) Vagal activity modulates spontaneous augmentation of ST elevation in the daily life of patients with Brugada syndrome. J Cardiovasc Electrophysiol 15:667–673

    Article  PubMed  Google Scholar 

  153. Antzelevitch C (2006) Brugada syndrome. Pacing Clin Electrophysiol 29:1130–1159

    Article  PubMed  Google Scholar 

  154. Kaufman ES (2009) Mechanisms and clinical management of inherited channelopathies: long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and short QT syndrome. Heart Rhythm 6:S51–S55

    Article  PubMed  Google Scholar 

  155. Flaim SN, McCulloch AD (2007) Acetylcholine-induced shortening of the epicardial action potential duration may increase repolarization gradients and LQT3 arrhythmic risk. J Electrocardiol 40:S66–S69

    Article  PubMed  Google Scholar 

  156. Shalaby AA, El-Saed A, Nemec J, Moossy JJ, Balzer JR (2007) Exacerbation of electrical storm subsequent to implantation of a right vagal stimulator. Clin Auton Res 17:385–390

    Article  PubMed  Google Scholar 

  157. De Ferrari GM, Schwartz PJ (to be accepted) Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions. Heart Fail Rev

Download references

Acknowledgments

This work has been supported in part by a grant from the State of Ohio to the Cleveland Clinic Atrial Fibrillation Innovation Center (AFIC), a Wright Center of Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todor N. Mazgalev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Mazgalev, T.N. Arrhythmias and vagus nerve stimulation. Heart Fail Rev 16, 147–161 (2011). https://doi.org/10.1007/s10741-010-9178-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-010-9178-2

Keywords

Navigation