Skip to main content

Advertisement

Log in

Control of autocrine and paracrine myocardial signals: an emerging therapeutic strategy in heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

A growing body of evidence supports the hypothesis that autocrine and paracrine mechanisms, mediated by factors released by the resident cardiac cells, could play an essential role in the reparative process of the failing heart. Such signals may influence the function of cardiac stem cells via several mechanisms, among which the most extensively studied are cardiomyocyte survival and angiogenesis. Moreover, besides promoting cytoprotection and angiogenesis, paracrine factors released by resident cardiac cells may alter cardiac metabolism and extracellular matrix turnover, resulting in more favorable post-injury remodeling. It is reasonable to believe that critical intracellular signals are activated and modulated in a temporal and spatial manner exerting different effects, overall depending on the microenvironment changes present in the failing myocardium. The recent demonstration that chemically, mechanically or genetically activated cardiac cells may release peptides to protect tissue against ischemic injury provides a potential route to achieve the delivery of specific proteins produced by these cells for innovative pharmacological regenerative therapy of the heart. It is important to keep in mind that therapies currently used to treat heart failure (HF) and leading to improvement of cardiac function fail to induce tissue repair/regeneration. As a matter of facts, if specific autocrine/paracrine cell–derived factors that improve cardiac function will be identified, pharmacological-based therapy might be more easily translated into clinical benefits than cell-based therapy. This review will focus on the recent development of potential pharmacologic targets to promote and drive at molecular level the cardiac repair/regeneration in HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348(20):2007–2018

    Article  PubMed  Google Scholar 

  2. Bergmann O, Bhardwaj RD, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102

    Article  PubMed  CAS  Google Scholar 

  3. Segers VF, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451(7181):937–942

    Article  PubMed  CAS  Google Scholar 

  4. Herrmann JL, Abarbanell AM, Weil BR, Wang Y, Wang M, Tan J, Meldrum DR (2009) Cell-based therapy for ischemic heart disease: a clinical update. Ann Thorac Surg 88(5):1714–1722

    Article  PubMed  Google Scholar 

  5. Chachques JC (2009) Cellular cardiac regenerative therapy in which patients? Expert Rev Cardiovasc Ther 7(8):911–919

    Article  PubMed  CAS  Google Scholar 

  6. Menasche P (2009) Cell-based therapy for heart disease: a clinically oriented perspective. Mol Ther 17(5):758–766

    Article  PubMed  CAS  Google Scholar 

  7. Zsolt B, Kaley G (2009) Where have all stem cells gone? Circ Res 104:280–281

    Article  CAS  Google Scholar 

  8. Leiker M, Suzuki G, Iyer VS, Canty JMJ, Lee T (2008) Assessment of a nuclear affinity labeling method for tracking implanted mesenchymal stem cells. Cell Transplant 17:911–922

    Article  PubMed  Google Scholar 

  9. Breitbach M, Bostani T, Roell W et al (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110:1362–1369

    Article  PubMed  CAS  Google Scholar 

  10. Barbash IM, Chouraqui P, Baron J et al (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108:863–868

    Article  PubMed  Google Scholar 

  11. Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219

    Article  PubMed  CAS  Google Scholar 

  12. Gnecchi M, He H, Noiseux N et al (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20:661–669

    Article  PubMed  CAS  Google Scholar 

  13. Lin H, Shabbir A, Molnar M, Yang J, Marion S, Canty JMJ, Lee T (2008) Adenoviral expression of vascular endothelial growth factor splice variants differen-tially regulate bone marrow-derived mesenchymal stem cells. J Cell Physiol 216:458–468

    Article  PubMed  CAS  Google Scholar 

  14. Shabbir A, Zisa D, Suzuki G, Lee T (2009) Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol 296(6):H1888–H1897

    Article  PubMed  CAS  Google Scholar 

  15. Ince H, Petzsch M, Kleine HD et al (2005) Preservation from left ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by use of granulocyte colony-stimulating factor (FIRSTLINE-AMI). Circulation 112:3097–3106

    Article  PubMed  CAS  Google Scholar 

  16. Saxena A, Fish JE, White MD et al (2008) Stromal cell-derived factor-1alpha is cardioprotective after myocardial infarction. Circulation 117(17):2224–2231

    Article  PubMed  CAS  Google Scholar 

  17. Hamada H, Kim MK, Iwakura A et al (2006) Estrogen receptors alpha and beta mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation 114(21):2261–2270

    Article  PubMed  CAS  Google Scholar 

  18. Forini F, Lionetti V, Ardehali H et al. (2010) Early long-term L-T3 replacement rescues mitochondria and prevents ischemic cardiac remodeling in rats. J Cell Mol Med. doi:10.1111/j.1582-4934.2010.01014.x

  19. Lionetti V, Cantoni S, Cavallini C et al. (2010) Hyaluronan mixed esters of butyric and retinoic acid affording myocardial survival and repair without stem cell transplantation. J Biol Chem. doi:10.1074/jbc.M109.087254

  20. Dhalla NS, Saini-Chohan HK, Rodriguez-Leyva D et al (2009) Subcellular remodeling may induce cardiac dysfunction in congestive heart failure. Cardiovasc Res 81(3):429–438

    Article  PubMed  CAS  Google Scholar 

  21. St John Sutton M, Ghio S, Plappert T et al (2009) Cardiac resynchronization induces major structural and functional reverse remodeling in patients with New York Heart Association class I/II heart failure. Circulation 120(19):1858–1860

    Article  PubMed  Google Scholar 

  22. Qanud K, Mamdani M, Pepe M et al (2008) Reverse changes in cardiac substrate oxidation in dogs recovering from heart failure. Am J Physiol Heart Circ Physiol 295(5):2098–2105

    Article  CAS  Google Scholar 

  23. Zacà V, Brewer R, Khanal S et al (2007) Left atrial reverse remodeling in dogs with moderate and advanced heart failure treated with a passive mechanical containment device: an echocardiographic study. J Card Fail 13(4):312–317

    Article  PubMed  Google Scholar 

  24. Lionetti V, Linke A, Chandler MP et al (2005) Carnitine palmitoyl transferase-I inhibition prevents ventricular remodeling and delays decompensation in pacing-induced heart failure. Cardiovasc Res 66(3):454–461

    Article  PubMed  CAS  Google Scholar 

  25. Zentilin L, Puligadda U, Lionetti V et al. (2009) Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J. doi:10.1096/fj.09-143180

  26. Ventura C, Cantoni S, Bianchi F et al (2007) Hyaluronan mixed esters of butyric and retinoic Acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infarcted rat hearts. J Biol Chem 282(19):14243–14252

    Article  PubMed  CAS  Google Scholar 

  27. Ventura C, Maioli M, Asara Y et al (2005) Turning on stem cell cardiogenesis with extremely low frequency magnetic fields. FASEB J 19(1):155–157

    PubMed  CAS  Google Scholar 

  28. Lionetti V, Fittipaldi A, Agostini S, Giacca M, Recchia FA, Picano E (2009) Enhanced caveolae-mediated endocytosis by diagnostic ultrasound in vitro. Ultrasound Med Biol 35(1):136–143

    Article  PubMed  Google Scholar 

  29. Wang BW, Hung HF, Chang H, Kuan P, Shyu KG (2007) Mechanical stretch enhances the expression of resist in gene in cultured cardiomyocytes via tumor necrosis factor-alpha. Am J Physiol Heart Circ Physiol 293(4):H2305–H2312

    Article  PubMed  CAS  Google Scholar 

  30. Linke WA (2008) Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc Res 77(4):637–648

    PubMed  CAS  Google Scholar 

  31. Lange S, Ehler E, Gautel M (2006) From A to Z and back? Multicompartment proteins in the sarcomere. Trends Cell Biol 16:11–18

    Article  PubMed  CAS  Google Scholar 

  32. Krüger M, Kötter S, Grützner A et al (2009) Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Circ Res 104(1):87–94

    Article  PubMed  CAS  Google Scholar 

  33. Daniels LB, Maisel AS (2007) Natriuretic peptides. J Am Coll Cardiol 50:2357–2368

    Article  PubMed  CAS  Google Scholar 

  34. Rastaldo R, Pagliaro P, Cappello S, Penna C, Mancardi D, Westerhof N, Losano G (2007) Nitric oxide and cardiac function. Life Sci 81:779–793

    Article  PubMed  CAS  Google Scholar 

  35. Mizote I, Yamaguchi O, Hikoso S et al (2010) Activation of MTK1/MEKK4 induces cardiomyocyte death and heart failure. J Mol Cell Cardiol 48(2):302–309

    Article  PubMed  CAS  Google Scholar 

  36. Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100

    Article  PubMed  CAS  Google Scholar 

  37. Bush EW, McKinsey TA (2009) Targeting histone deacetylases for heart failure. Expert Opin Ther Targets 13(7):767–784

    Article  PubMed  CAS  Google Scholar 

  38. Premont RT, Gainetdinov RR (2007) Physiological roles of G protein-coupled receptor kinases and arrestins. Annu Rev Physiol 69:511–534

    Article  PubMed  CAS  Google Scholar 

  39. Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415:206–212

    Article  PubMed  CAS  Google Scholar 

  40. Martini JS, Raake P, Vinge LE et al (2008) Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proc Natl Acad Sci USA 105(34):12457–12462

    Article  PubMed  Google Scholar 

  41. Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN (2004) Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24(19):8467–8476

    Article  PubMed  CAS  Google Scholar 

  42. Makino S, Fukuda K, Miyoshi S et al (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103(5):697–705

    Article  PubMed  CAS  Google Scholar 

  43. Hare JM, Chaparro SV (2008) Cardiac regeneration and stem cell therapy. Curr Opin Organ Transplant 13(5):536–542

    Article  PubMed  Google Scholar 

  44. Yun BG, Matts RL (2005) Differential effects of Hsp90 inhibition on protein kinases regulating signal transduction pathways required for myoblast differentiation. Exp Cell Res 307(1):212–223

    Article  PubMed  CAS  Google Scholar 

  45. Xaymardan M, Cimini M, Fazel S et al (2009) c-Kit function is necessary for in vitro myogenic differentiation of bone marrow hematopoietic cells. Stem Cells 27(8):1911–1920

    Article  PubMed  CAS  Google Scholar 

  46. Roussel M, Moreau P, Huynh A et al (2010) Bortezomib and high dose melphalan as conditioning regimen before autologous stem cell transplantation in patients with de novo multiple myeloma: a phase II study of the Intergroupe Francophone du Myelome (IFM). Blood 115(1):32–37

    Article  PubMed  CAS  Google Scholar 

  47. Erker T, Schreder ME, Studenik C (2000) Studies on the chemistry of thienoannelated O,N- and S,N- containing heterocycles. Part 19: thieno[2,3-b][1,4]thiazines with calcium antagonistic and potassium opening activities. Arch Pharm (Weinheim) 333(2-3):58–62

    Article  CAS  Google Scholar 

  48. Wei L, Malhotra SV (2009) Recent development of cyclic amide (Pyridone/Lactam) moiety containing heterocycles as protein kinase inhibitors. Curr Med Chem 17(3):234–253

    Article  Google Scholar 

  49. Desbordes SC, Placantonakis DG, Ciro A, Socci ND, Lee G, Djaballah H, Studer L (2008) High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells. Cell Stem Cell 2(6):602–612

    Article  PubMed  CAS  Google Scholar 

  50. Hou J, Charters AM, Lee SC et al (2007) A systematic screen for genes expressed in definitive endoderm by serial analysis of gene expression (SAGE). BMC Dev Biol 7:92

    Article  PubMed  CAS  Google Scholar 

  51. Butler GS, Overall CM (2009) Proteomic identification of multitasking proteins in unexpected locations complicates drug targeting. Nat Rev Drug Discov 8(12):935–948

    Article  PubMed  CAS  Google Scholar 

  52. Ventura C, Maioli M, Asara Y et al (2004) Butyric and retinoic mixed ester of hyaluronan. A novel differentiating glycoconjugate affording a high throughput of cardiogenesis in embryonic stem cells. J Biol Chem 279(22):23574–23579

    Article  PubMed  CAS  Google Scholar 

  53. Beltrami AP, Urbanek K, Kajstura J et al (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344(23):1750–1757

    Article  PubMed  CAS  Google Scholar 

  54. Ventura C, Guarnieri C, Vaona I, Campana G, Pintus G, Spampinato S (1994) Dynorphin gene expression and release in the myocardial cell. J Biol Chem 269(7):5384–5386

    PubMed  CAS  Google Scholar 

  55. Ventura C, Zinellu E, Maninchedda E, Maioli M (2003) Dynorphin B is an agonist of nuclear opioid receptors coupling nuclear protein kinase C activation to the transcription of cardiogenic genes in GTR1 embryonic stem cells. Circ Res 92(6):623–629

    Article  PubMed  CAS  Google Scholar 

  56. Weil J, Zolk O, Griepentrog J, Wenzel U, Zimmermann WH, Eschenhagen T (2006) Alterations of the preproenkephalin system in cardiac hypertrophy and its role in atrioventricular conduction. Cardiovasc Res 69(2):412–422

    Article  PubMed  CAS  Google Scholar 

  57. Ventura C, Zinellu E, Maninchedda E, Fadda M, Maioli M (2003) Protein kinase C signaling transduces endorphin-primed cardiogenesis in GTR1 embryonic stem cells. Circ Res 92(6):617–622

    Article  PubMed  CAS  Google Scholar 

  58. Ventura C, Pintus G, Vaona I, Bennardini F, Pinna G, Tadolini B (1995) Phorbol ester regulation of opioid peptide gene expression in myocardial cells. Role of nuclear protein kinase. J Biol Chem 270(50):30115–30120

    Article  PubMed  CAS  Google Scholar 

  59. Re RN, Cook JL (2008) The physiological basis of intracrine stem cell regulation. Am J Physiol Heart Circ Physiol 295(2):H447–H453

    Article  PubMed  CAS  Google Scholar 

  60. Wu X, Ding S, Ding Q, Gray NS, Schultz PG (2004) Small molecules that induce cardiomyogenesis in embryonic stem cells. J Am Chem Soc 126(6):1590–1591

    Article  PubMed  CAS  Google Scholar 

  61. Kuhn B, Del Monte F, Hajjar RJ et al (2007) Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 13:962–969

    Article  PubMed  CAS  Google Scholar 

  62. Bersell K, Arab S, Haring B, Kuhn B (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138:257–270

    Article  PubMed  CAS  Google Scholar 

  63. Novoyatleva T, Diehl F, van Amerongen MJ et al (2010) TWEAK is a positive regulator of cardiomyocyte proliferation. Cardiovasc Res 85:681–690

    Article  PubMed  CAS  Google Scholar 

  64. Hellström M, Johansson B, Engström-Laurent A (2006) Hyaluronan and its receptor CD44 in the heart of newborn and adult rats. Anat Rec A Discov Mol Cell Evol Biol 288(6):587–592

    PubMed  Google Scholar 

  65. Rodgers LS, Lalani S, Hardy KM et al (2006) Depolymerized hyaluronan induces vascular endothelial growth factor, a negative regulator of developmental epithelial-to-mesenchymal transformation. Circ Res 99(6):583–589

    Article  PubMed  CAS  Google Scholar 

  66. Gao F, Yang CX, Mo W, Liu YW, He YQ (2008) Hyaluronan oligosaccharides are potential stimulators to angiogenesis via RHAMM mediated signal pathway in wound healing. Clin Invest Med 31(3):E106–E116

    PubMed  CAS  Google Scholar 

  67. Lee JL, Wang MJ, Chen JY (2009) Acetylation and activation of STAT3 mediated by nuclear translocation of CD44. J Cell Biol 185(6):949–957

    Article  PubMed  CAS  Google Scholar 

  68. Heo H, Yoo L, Shin KS, Kang J (2009) Suppression of caspase-11 expression by histone deacetylase inhibitors. Biochem Biophys Res Commun 378(1):79–83

    Article  PubMed  CAS  Google Scholar 

  69. Rochais F, Mesbah K, Kelly RG (2009) Signaling pathways controlling second heart field development. Circ Res 104(8):933–942

    Article  PubMed  CAS  Google Scholar 

  70. Engel FB, Hsieh PC, Lee RT, Keating MT (2006) FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci USA 103:15546–15551

    Article  PubMed  CAS  Google Scholar 

  71. Fuller SJ, Sivarajah K, Sugden PH (2008) ErbB receptors, their ligands, and the consequences of their activation and inhibition in the myocardium. J Mol Cell Cardiol 44:831–854

    Article  PubMed  CAS  Google Scholar 

  72. Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  PubMed  CAS  Google Scholar 

  73. Popescu LM, Gherghiceanu M, Manole CG, Faussone-Pellegrini MS (2000) Cardiac renewing: interstitial Cajal-like cells nurse cardiomyocyte progenitors in epicardial stem cell niches. J Cell Mol Med 13:866

    Article  CAS  Google Scholar 

  74. Son BR, Marquez-Curtis LA, Kucia M et al (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24:1254–1264

    Article  PubMed  CAS  Google Scholar 

  75. Napoli C, Maione C, Schiano C, Fiorito C, Ignarro LJ (2007) Bone marrow cell-mediated cardiovascular repair: potential of combined therapies. Trends Mol Med 13:278–286

    Article  PubMed  CAS  Google Scholar 

  76. Kawakami M, Tsutsumi H, Kumakawa T et al (1990) Levels of serum granulocyte colony stimulating factor in patients with infections. Blood 76:1962–1964

    PubMed  CAS  Google Scholar 

  77. Leone AM, Rutella S, Bonanno G et al (2006) Endogenous G-CSF and CD34(+) cell mobilization after acute myocardial infarction. Int J Cardiol 111:202–208

    Article  PubMed  Google Scholar 

  78. Wojakowski W, Tendera M, Michalowska A et al (2004) Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 110:3213–3220

    Article  PubMed  CAS  Google Scholar 

  79. Bussolino F, Wang JM, Defilippi P et al (1989) Granulocyte- and granulocyte macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature 337:471–473

    Article  PubMed  CAS  Google Scholar 

  80. Bussolino F, Ziche M, Wang JM et al (1991) In vitro and in vivo activation of endothelial cells by colony-stimulating factors. J Clin Invest 87:986–995

    Article  PubMed  CAS  Google Scholar 

  81. Pelletier L, Regnard J, Fellmann D, Charbord P (2000) An in vitro model for the study of human bone marrow angiogenesis: role of hematopoietic cytokines. Lab Invest 80:501–511

    PubMed  CAS  Google Scholar 

  82. Chen X, Kelemen SE, Autieri MV (2004) AIF-1 expression modulates proliferation of human vascular smooth muscle cells by autocrine expression of G-CSF. Arterioscler Thromb Vasc Biol 24:1217–1222

    Article  PubMed  CAS  Google Scholar 

  83. Lee M, Aoki M, Kondo T, Kobayashi K et al (2005) Therapeutic angiogenesis with intramuscular injection of low-dose recombinant granulocyte-colony stimulating factor. Arterioscler Thromb Vasc Biol 25:2535–2541

    Article  PubMed  CAS  Google Scholar 

  84. Buschmann IR, Hoefer IE, van Royen N et al (2001) GM-CSF: a strong arteriogenic factor acting by amplification of monocyte function. Atherosclerosis 159:343–356

    Article  PubMed  CAS  Google Scholar 

  85. Anghelina M, Krishnan P, Moldovan L, Moldovan NI (2006) Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: conversion of cell columns into fibrovascular bundles. Am J Pathol 168:529–541

    Article  PubMed  CAS  Google Scholar 

  86. Harada M, Qin Y, Takano H et al (2005) G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med 11:305–311

    Article  PubMed  CAS  Google Scholar 

  87. Ueda K, Takano H, Hasegawa H et al (2006) Granulocyte colony stimulating factor directly inhibits myocardial ischemia–reperfusion injury through Akt-endothelial NO synthase pathway. Arterioscler Thromb Vasc Biol 26:e108–e113

    Article  PubMed  CAS  Google Scholar 

  88. Kuhlmann MT, Kirchhof P, Klocke R et al (2006) G-CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis. J Exp Med 203:87–97

    Article  PubMed  CAS  Google Scholar 

  89. Miyata S, Takemura G, Kawase Y et al (2006) Autophagic cardiomyocyte death in cardiomyopathic hamsters and its prevention by granulocyte colony-stimulating factor. Am J Pathol 168:386–397

    Article  PubMed  CAS  Google Scholar 

  90. Shimoji K, Yuasa S, Onizuka T et al (2010) G-CSF promotes the proliferation of developing cardiomyocytes in vivo and in derivation from ESCs and iPSCs. Cell Stem Cell 6:227–237

    Article  PubMed  CAS  Google Scholar 

  91. Ausoni S, Sartore S (2009) The cardiovascular unit as a dynamic player in disease and regeneration. Trends Mol Med 15:543–552

    Article  PubMed  Google Scholar 

  92. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  PubMed  CAS  Google Scholar 

  93. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  PubMed  CAS  Google Scholar 

  94. Terentyev D, Belevych AE, Terentyeva R et al (2009) miR-1 overexpression enhances Ca2+ release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56{alpha} and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ Res 104:514–521

    Article  PubMed  CAS  Google Scholar 

  95. van Rooij E, Sutherland LB, Liu N et al (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 103:18255–18260

    Article  PubMed  CAS  Google Scholar 

  96. Wang S, Aurora AB, Johnson BA et al (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15(2):261–271

    Article  PubMed  CAS  Google Scholar 

  97. Bonauer A, Carmona G, Iwasaki M et al (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324(5935):1710–1713

    Article  PubMed  CAS  Google Scholar 

  98. Cordes KR, Sheehy NT, White MP et al (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460(7256):705–710

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by intramural funds from the Scuola Superiore Sant’Anna grants and “Bando Giovani Ricercatori RF 2007” from Ministero del Lavoro, della Salute e delle Politiche Sociali, Italy (V.L.), in part from Ministero dell’ Istruzione, dell’ Universita` e della Ricerca, Italy (C.V.). F.A. Recchia is an Established Investigator of the AHA. We are grateful to Dr. Silvia Agostini for her comments and helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Lionetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lionetti, V., Bianchi, G., Recchia, F.A. et al. Control of autocrine and paracrine myocardial signals: an emerging therapeutic strategy in heart failure. Heart Fail Rev 15, 531–542 (2010). https://doi.org/10.1007/s10741-010-9165-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-010-9165-7

Keywords

Navigation