Skip to main content
Log in

Architecture of the left ventricle: insights for optimal surgical ventricular restoration

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The normal left ventricular shape has been defined as prolate ellipsoid. This shape is an adaptation to evolution. A knowledge of its unique macro and micro architecture forms the cornerstone in the understanding of its complex function. The left ventricle has a unique architecture with three different myofiber orientations, the longitudinal, circumferential and oblique fibers. The oblique orientation of fibers is essential for effective clockwise and anticlockwise torsional movements during systole and diastole, for optimal ventricular ejection and filling. The orientation and fiber angle decide the shape of the ventricle. An ellipsoid shape is vital for optimal function. Pathological disease states such as ischemic heart disease, valvular heart disease and cardiomyopathies cause a loss of obliquity of the myofibers. The myofibers become more horizontal resulting in ventricular dilatation and increased sphericity. The change from ellipsoid to globular shape with disease heralds the onset of left ventricular dysfunction and initiates the cascade of heart failure. Several strategies have been successful in reverting ventricular dilatation and sphericity to a more ellipsoid geometry. Pharmacological therapies like beta blockade and angiotensin converting enzyme inhibition have proven beneficial in early stages of heart failure with pathological remodeling. However, these agents in isolation are limited in reversing pathological remodeling in advanced heart failure. In some cases of advanced heart failure due to postinfarction left ventricular aneurysms, ventricular volume reduction with restoration surgeries have a role in restoring ventricular geometry with beneficial clinical outcomes. Surgical ventricular restoration has progressively evolved from the 1950s. Initially, aneurysmal resection and linear repair was done. This was gradually replaced by endoventricular patch plasty, which had better results. The resulting left ventricle was smaller in size but still continued to have a spherical configuration. Exclusion of the infarct area with a smaller longitudinal patch results in realignment of the non-diseased ventricular fibers with a resulting ellipsoid shape. This ellipsoid shape ensures clinical benefits. The geometry of the endoventricular patch thus holds the key to optimal ventricular shape in these patients. The technique to optimally restore a diseased ventricle to normal continues to evolve. This requires insights into the normal architecture and function, and the pathophysiologic effects of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rankin JS, Mc Hale PA, Arentzen CE, Ling D, Greenfield JC Jr, Andersen RW (1976) The three dimensional dynamic geometry of the left ventricle in the conscious dog. Circ Res 39:304–313

    CAS  PubMed  Google Scholar 

  2. Hutchins GM, Brawley RK (1980) The influence of cardiac geometry on the results of ventricular aneurysm repair. Am J Pathol 99:221–230

    CAS  PubMed  Google Scholar 

  3. Burton AC (1957) The importance of the shape and size of the heart. Am Heart J 54:801–810

    Article  CAS  PubMed  Google Scholar 

  4. Wong AYK, Rautaharju PM (1968) Stress distribution within the left ventricular wall approximated as a thick ellipsoid shell. Am Heart J 5:649–662

    Article  Google Scholar 

  5. Torrent-Guasp FF, Whimster WF, Redmann K (1997) A silicone rubber mould of the heart. Technol Health Care 5:13–20

    CAS  PubMed  Google Scholar 

  6. Torrent-Guasp FF, Ballester M, Buckberg GD (2001) Spatial orientation of the ventricular muscle band: physiologic contribution and surgical implications. J Thorac Cardiovasc Surg 122:389–392

    Article  CAS  PubMed  Google Scholar 

  7. Sedemera D (2005) Form follows function: developmental and physiological view on ventricular myocardial architecture. Eur J Cardiothorac Surg 28:526–528

    Article  Google Scholar 

  8. Criscione JC, Rodrigues F, Miller DC (2005) The myocardial band: simplicity can be a weakness. Eur J Cardiothorac Surg 28:363–364

    Article  PubMed  Google Scholar 

  9. Andersen RH, Ho SY, Redmann K, Sanchez-Quintana D, Lunkenheimer PP (2005) The anatomical arrangement of the myocardial cells making up the ventricular mass. Eur J Cardiothorac Surg 28:517–525

    Article  Google Scholar 

  10. Chen J, Liu W, Zhang H (2005) Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction: quantification with diffusion tensor MRI. Am J Physiol Heart Circ Physiol 289:H1898–H1907

    Article  CAS  PubMed  Google Scholar 

  11. Vendelin M, Bovedeerd PH, Engelbrechet J, Arts T (2002) Optimising ventricular fibers: uniform strain or stress, but not ATP consumption, leads to high efficiency. Am J Physiol Heart Circ Physiol 283:H 1072–H 1081

    CAS  Google Scholar 

  12. Nielsen PM, Le Grice IJ, Smaill BH, Hunter PJ (1991) Mathematical model of geometry and fibrous structure of the heart. Am J Physiol 260:H1365–H1378

    CAS  PubMed  Google Scholar 

  13. Takayama Y, Costa KD, Covell JW (2002) Contribution of laminar myofiber architcture to load dependent changes in mechanics of LV myocardium. Am J Physiol Heart Circ Physiol 282:H1510–H1520

    CAS  PubMed  Google Scholar 

  14. Costa KD, Takayama Y, Mc culloch AD, Covell JW (1999) Laminar fiber architecture and three dimensional systolic mechanics in canine ventricular myocardium. Am J Physiol Heart Circ Physiol 276:H 595–H 607

    CAS  Google Scholar 

  15. Grider JR (2003) Reciprocal activity of longitudinal and circular muscle during intestinal peristaltic reflex. Am J Physiol Gastrointest Liver Physiol 284:G 768–G 775

    CAS  Google Scholar 

  16. Streeter DD Jr, Spotniz HM, Patel DP, Ross J Jr, Sonnenblick EH (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24:339–347

    PubMed  Google Scholar 

  17. Geertz L, Bovendeerd P, Nicolay K, Arts T (2002) Characterisation of the normal cardiac myofiber in goat measured with MR diffusion tensor imaging. Am J Physiol Heart Circ Physiol 283:H 139–H 145

    Google Scholar 

  18. Greenbaum RA, Ho SY, Gibson DG, Becker AE, Andersen RH (1981) Left ventricular fiber architecture in man. Br Heart J 45:248–263

    Article  CAS  PubMed  Google Scholar 

  19. Grant RP (1965) Notes on the muscular architecture of the left ventricle. Circulation 32:301–308

    CAS  PubMed  Google Scholar 

  20. Weiss P (1929) Mechanical tension and fiber orientation in cultures of fibroblasts. Arch Entwicklungsmech Organ 116:438

    Article  Google Scholar 

  21. Moore CC, McVeigh ER, Elias A (2000) Quantitative tagged magnetic resonance imaging of the normal human ventricle. Topics in MRI 11(6):359–371

    CAS  Google Scholar 

  22. Young AA, Imai H, Chang CN, Axel L (1994) Two-dimensional left ventricular deformation during systole using MRI with spatial modulation of magnetization. Circulation 89:740–752

    CAS  PubMed  Google Scholar 

  23. Axel L, Gonsalves R, Bloomgarden D (1992) Regional heart wall motion: two-dimensional analysis and functional imaging of regional heart wall motion with MRI. Radiology 183:745–750

    CAS  PubMed  Google Scholar 

  24. Rogers W, Shapiro E, Weiss J (1991) Quantification of and correction for left ventricular systolic long-axis shortening by MR tissue tagging and slice isolation. Circulation 84:721–731

    PubMed  Google Scholar 

  25. Reichek N (1991) MRI for assessment of myocardial function. Magn Reson Q 7:255–274

    CAS  PubMed  Google Scholar 

  26. Buchalter MB, Weiss JL, Rogers WJ, Zerhouni EA, Weissfeldt ML, Beyar R, Shapiro EP (1990) Noninvasive quantification of left ventricular rotational deformation in normal humans using MRI myocardial tagging. Circulation 81:1236–1244

    CAS  PubMed  Google Scholar 

  27. Ashikaga H, Criscione JC, Omens JH, Covell JW, Ingels NB (2004) Transmural left ventricular mechanics underlying torsional recoil during relaxation. Am J Physiol Heart Circ Physiol 286:640–647

    Article  Google Scholar 

  28. Sallin EA (1969) Fiber orientation and ejection fraction in the human ventricle. Biophys J 9:954–964

    Article  CAS  PubMed  Google Scholar 

  29. Pettersen E, Vale TH, Lindberg EH, Smith HJ, Smevik B, Andersen K (2007) Contraction pattern of the systemic right ventricle. J Am Coll Cardiol 49:2450–2456

    Article  PubMed  Google Scholar 

  30. Nagel E, Stuber M, Lakatos M, Scheidegger MB, Boesiger P, Hess OM (2000) Cardiac rotation and relaxation after anterolateral myocardial infarction. Coron Artery Dis 11:261–267

    Article  CAS  PubMed  Google Scholar 

  31. Stuber M, Scheidegger MB, Fischer SC, Nagel E, Steinmann F, Hess OM, Boesiger P (1999) Alterations in the local myocardial motion pattern in patients suffering from pressure overload due to aortic stenosis. Circulation 100:361–368

    CAS  PubMed  Google Scholar 

  32. Tibiyan FA, Lai DT, Timek TA, Dagum P, Liang D, Daughters GT, Ingels NB, Miller DC (2002) Alterations in left ventricular torsion in tachycardia induced dilated cardiomyopathy. J Thorac Cardiovasc Surg 124:43–49

    Article  Google Scholar 

  33. Gerald D Buckberg and the RESTORE group (2006) Form versus disease: optimising geometry during ventriculr restoration. Eur J Cardiothorac Surg 29:S238–S244

    Article  Google Scholar 

  34. Spotniz HM (2000) Macro design, atructure and mechanics of the left ventricle. J Thorac Cardiovasc Surg 119(5):1053–1077

    Google Scholar 

  35. Helm PA, Younes L, Beg MF, Ennis DB, Leclerq C, Faris OP, Veigh EM, Kass D, Miller MI, Winslow RL (2006) Evidence of structural remodeling in the dyssynchronous failing heart. Circ Res 98:125–132

    Article  CAS  PubMed  Google Scholar 

  36. Vayo HW (1966) Theory of the left ventricular aneurysm. Bull Math Biophys 28:363

    Article  CAS  PubMed  Google Scholar 

  37. Badeer HS (1963) Contractile tension in the myocardium. Am Heart J 66:432–437

    Article  CAS  PubMed  Google Scholar 

  38. Gaasch WH, Carroll JD, Levine JH, Criscitiello MG (1983) Chronic aortic regurgitation: prognostic value of left ventricular end-systolic dimension and end-diastolic radius-thickness ratio. J Am Coll Cardiol 1:775–782

    CAS  PubMed  Google Scholar 

  39. Likhoff W, Bailey CP (1955) Ventriculoplasty: excision of myocardial aneurysm. J Am Med Assoc 158:915

    Google Scholar 

  40. Cooley DA, Henly WS, Ahmad KH, Chapman DW (1959) Ventricular aneurysm following myocardial infarction: results of surgical treatment. Ann Surg 150:595–612

    Article  CAS  PubMed  Google Scholar 

  41. Mickelborough LL, Maruyama H, Liu P, Mohammed SS (1994) Results of left ventricular aneurysmectomy with a tailored scar excision and primary closure technique. J Thorac Cardiovasc Surg 107:690–698

    Google Scholar 

  42. Jatene AD (1985) Left ventricular aneurysmectomy: resection or reconstruction. J Thorac Cardiovasc Surg 89:321

    CAS  PubMed  Google Scholar 

  43. EB Savage, SW Downing, MB Ratcliffe, M Fallert, KB Gupta, GS Tyson, DK Bogen, LH Edmunds Jr (1992) Repair of left ventricular aneurysm. Changes in ventricular mechanics, hemodynamics and oxygen consumption. J Thorac Cardiovasc Surg 104:752–762

    CAS  PubMed  Google Scholar 

  44. Kramer CM, Magovern JA, Rogers WJ, Vido D, Savage EB (2002) Reverse remodeling and improved regional function after repair of left ventricular aneurysm. J Thorac Cardiovasc Surg 123:700–706

    Article  PubMed  Google Scholar 

  45. Setser RM, Sedemera NG, Lieber ML, Sabo ED, White RD (2007) Left ventricular torsional mechanics after left ventricular reconstruction surgery for ischemic cardiomyopathy. J Thorac Cardiovasc Surg 134(4):888–896

    Article  PubMed  Google Scholar 

  46. Dor V (1992) Surgery for left ventricular aneurysm. Curr Opin Cardiol 5:557

    Google Scholar 

  47. Menicanti L, Castelvecchio S, Ranucci M, Frigiola A, Santambrogio C, De Vincentiis C, Brancovic J, Donato MD (2007) Surgical therapy for ischemic heart failure: single center experience with surgical anterior ventricular restoration. J Thorac Cardiovasc Surg 134:433–441

    Article  PubMed  Google Scholar 

  48. CL Athenasuleas and the RESTORE group (2001) Surgical anterior ventricular restoration in the dilated remodeled ventricle after anterior myocardial infarction. J Am Coll Cardiol 37:1199–1209

    Article  Google Scholar 

  49. Marisa Di Donato and the RESTORE group (2006) Left ventricular geometry in normal and post-anterior myocardial infarction patients: sphericity index and ‘new’ conicity index comparisons. Eur J Cardiothorac Surg 29S:S 225–S 230

    Google Scholar 

  50. Di Donato M, Toso A, Dor V, Sabatier M, Menicanti L (2004) SVR improves LV mechanical intraventricular dyssynchrony in ischemic cardiomyopathy. Circulation 109:2536–2543

    Article  PubMed  Google Scholar 

  51. Athenasuleas CL, Buckberg GD, Stanley AW, Dor V, Di Donato M (2004) SVR in the treatment of congestive heart failure due to post-infarction ventricular dilatation. J Am Coll Cardiol 44:1439–1445

    Article  Google Scholar 

  52. Tulner SAF, Steendjik P, Klautz RJM, Bax JJ, Shalij MJ, Wall EVD (2006) SVR in patients with ischemic dilated cardiomyopathy: evaluation of systolic and diastolic ventricular function, wall stress, dyssynchrony and mechanical efficiency by pressure–volume loops. J Thorac Cardiovasc Surg 132:610–620

    Article  PubMed  Google Scholar 

  53. Baan J, Velde ET, Bruin HG, Smeenk GJ, Koops J, V Dijk AD (1984) Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 70:312–323

    Google Scholar 

  54. Kass DA, Maughan WL, Guo ZM, Kono A, Sunagawa K, Sagawa K (1987) Comparitive influence of load versus inotropic states on indices of ventricular contractility: experimental and theoretical analysis based on pressure–volume relationships. Circulation 76:1422–1436

    CAS  PubMed  Google Scholar 

  55. Dor V, Saab M, Coste P (1989) Left ventricular aneurysm: a new surgical approach. J Thorac Cardiovasc Surg 37:11

    Article  CAS  Google Scholar 

  56. Menicanti L, Di Donato M (2002) The Dor procedure: what has changed after 15 years of clinical practice? J Thorac Cardiovasc Surg 124:886–890

    Article  PubMed  Google Scholar 

  57. Kawata T, Kitamura S, Kawachi K, Morita R, Yoshida Y, Hasegawa J (1995) Systolic and diastolic function after patch reconstruction of left ventricular aneurysms. Ann Thorac Surg 59:403–407

    Article  CAS  PubMed  Google Scholar 

  58. Watson LE, Dickhaus DW, Martin RH (1975) Left ventricular aneurysm: pre-operative hemodynamics, chamber volume and results of aneurysmectomy. Circulation 52:868–873

    CAS  PubMed  Google Scholar 

  59. Dor V, Montiglio F, Sabatier M, Coste P, Barletta G, Donato D (1994) Left ventricular shape changes induced by aneurysmectomy with endoventricular circular patch plasty reconstruction. Eur Heart J 15(8):1063–1069

    CAS  PubMed  Google Scholar 

  60. Cooley DA (1989) Ventricular endoaneurysmorraphy. Results of an improved method of repair. Tex Heart Inst J 16:72–75

    CAS  PubMed  Google Scholar 

  61. Klein MD, Herman MV, Gorlin R (1967) A hemodynamic study of left ventricular aneurysm. Circulation 35:614–630

    CAS  PubMed  Google Scholar 

  62. Parachuri VR, Adhyapak SM, Kumar P, Setty R, Rathod R, Shetty DP (2008) Ventricular restoration by linear endoventricular patch plasty and linear repair. Asian Cardiovasc Thorac Ann 16:401–406

    PubMed  Google Scholar 

  63. Kass DA et al (1988) Shape changes in aortic and mitral regurgitation: assessment by Fourier shape analysis and global geometric indices. Circ Res 62(1):127–138

    CAS  PubMed  Google Scholar 

  64. Sabbah HN, Konno T, Stein PD, Mancini GB, Goldstein S (1992) Left ventricular shape changes during the course of evolving heart failure. Am J Physiol 263(1):H266–H270

    CAS  PubMed  Google Scholar 

  65. Tiscler MD, Niggel J, Borowski DT, Le Winter MM (1993) Relation between left ventricular shape and exercise capacity in patients with left ventricular dysfunction. J Am Coll Cardiol 22:751–757

    Article  Google Scholar 

  66. Jones RH, Velazquez EJ, Michler RE (2009) For the STICH hypothesis 2 investigators. Coronary bypass surgery with or without surgical ventricular restoration. N Engl J Med 360(17):1705–1717

    Article  CAS  PubMed  Google Scholar 

  67. Calafiore AM, Mauro MD, Giammarco GD, Gallina S, Iaco AL, Contini M, Bivoni A, Volpe S (2004) Septal reshaping for exclusion of anteroseptal dyskinetic or akinetic areas. Ann Thorac Surg 77:2115–2121

    Article  PubMed  Google Scholar 

  68. Buckberg GD, Weisfeldt ML, Ballester M, Beyar R, Burkoff D et al (2004) Left ventricular form and function. Scientific priorities and strategic planning for development of new views of disease. Circulation 110:e333–e336

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srilakshmi M. Adhyapak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adhyapak, S.M., Parachuri, V.R. Architecture of the left ventricle: insights for optimal surgical ventricular restoration. Heart Fail Rev 15, 73–83 (2010). https://doi.org/10.1007/s10741-009-9151-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-009-9151-0

Keywords

Navigation